Advertisement

Mathematical Programming Computation

, Volume 8, Issue 1, pp 1–45 | Cite as

A new novel local search integer-programming-based heuristic for PCB assembly on collect-and-place machines

  • Anupam Seth
  • Diego KlabjanEmail author
  • Placid M. Ferreira
Full Length Paper

Abstract

This paper presents the development of a novel vehicle-routing-based algorithm for optimizing component pick-up and placement on a collect-and-place type machine in printed circuit board manufacturing. We present a two-phase heuristic that produces solutions of remarkable quality with respect to other known approaches in a reasonable amount of computational time. In the first phase, a construction procedure is used combining greedy aspects and solutions to subproblems modeled as a generalized traveling salesman problem and quadratic assignment problem. In the second phase, this initial solution is refined through an iterative framework requiring an integer programming step. A detailed description of the heuristic is provided and extensive computational results are presented.

Keywords

Heuristic Local search Integer programming Printed circuit board Vehicle-routing Generalized TSP 

Mathematics Subject Classification

90B06 (Primary) 68T20 68T40 68W25 90-08 90B10 90C06 90C10 90C27 90C35 90C59 90C90 05C85 05C90 

References

  1. 1.
    Ahmadi, J., Ahmadi, R., Matuso, H., Tirupati, D.: Component fixture positioning/sequencing for printed circuit board assembly with concurrent operations. Oper. Res. 43(3), 444–457 (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Altinkemer, K., Kazaz, B., Köksalan, M., Moskowitz, H.: Optimization of printed circuit board manufacturing: integrated modeling and algorithms. Eur. J. Oper. Res. 124(2), 409–421 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Applegate, D., Bixby, R., Chvatal, V., Cook, W.: CONCORDE TSP solver. Website http://www.tsp.gatech.edu/concorde.html (2009)
  4. 4.
    Ayob, M., Kendall, G.: A triple objective function with a Chebychev dynamic pick-and-place point specification approach to optimise the surface mount placement machine. Eur. J. Oper. Res. 164(3), 609–626 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Ayob, M., Kendall, G.: A survey of surface mount device placement machine optimisation: machine classification. Eur. J. Oper. Res. 186(3), 893–914 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ball, M.O., Magazine, M.J.: Sequencing of insertions in printed circuit board assembly. Oper. Res. 36(2), 192–201 (1988)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Burke, E.K., Cowling, P.I., Keuthen, R.: Effective heuristic and metaheuristic approaches to optimize component placement in printed circuit board assembly. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1 (2000)Google Scholar
  9. 9.
    Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  10. 10.
    Crama, Y., van de Klundert, J., Spieksma, F.C.R.: Production planning problems in printed circuit board assembly. Discrete Appl. Math. 123(1–3), 339–361 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Ellis, K.P., Kobza, J.E., Vittes, F.J.: Development of a placement time estimator function for a turret style surface mount placement machine. Robot. Comput. Integr. Manuf. 18(3–4), 241–254 (2002)CrossRefGoogle Scholar
  13. 13.
    Ellis, K.P., Vittes, F.J., Kobza, J.E.: Optimizing the performance of a surface mount placement machine. IEEE Trans. Electron. Packag. Manuf. [see also IEEE Transactions on Components, Packaging and Manufacturing Technology, Part C: Manufacturing] 24(3), 160–170 (2001)Google Scholar
  14. 14.
    Feremans, C., Grigoriev, A.: Approximation schemes for the generalized geometric problems with geographic clustering. METEOR, Maastricht research school of Economics of TEchnology and ORganizations; University Library, Universiteit Maastricht (2004)Google Scholar
  15. 15.
    Fischetti, M., Salazar Gonzalez, J.J., Toth, P.: The symmetric generalized traveling salesman polytope. Networks 26(2), 113–123 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Fischetti, M., Toth, P.: The generalized traveling salesman and orienteering problems. Comb. Optim. 12, 609–662 (2002)MathSciNetGoogle Scholar
  17. 17.
    Franceschi, R.D., Fischetti, M., Toth, P.: A new ILP-based refinement heuristic for vehicle routing problems. Math. Program. 105(2), 471–499 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Golden, B.L., Raghavan, S., Wasil, E.A.: The vehicle routing problem: latest advances and new challenges, vol. 43 of Operations Research/Computer Science Interfaces Series. Springer (2008)Google Scholar
  19. 19.
    Grunow, M., Günther, H.O., Schleusener, M., Yilmaz, I.O.: Operations planning for collect-and-place machines in PCB assembly. Comput. Ind. Eng. 47(4), 409–429 (2004)CrossRefGoogle Scholar
  20. 20.
    Gyorfi, J.S., Wu, C.H.: An efficient algorithm for placement sequence and feeder assignment problems with multiple placement-nozzles and independent link evaluation. IEEE Trans. Syst. Man Cybern.: Part A: Syst. Hum. 38(2), 437 (2008)CrossRefGoogle Scholar
  21. 21.
    Haberle, K.R., Graves, R.J.: Cycle time estimation for printed circuit board assemblies. IEEE Trans. Electron. Packag. Manuf. [see also IEEE Transactions on Components, Packaging and Manufacturing Technology, Part C: Manufacturing], 24(3), 188–194 (2001)Google Scholar
  22. 22.
    Haimovich, M., Kan, A.H.G.R., Stougie, L.: Vehicle Routing: Methods and Studies. North-Holland, 1988, ch. Analysis of heuristics for vehicle routing problems, pp. 47–61Google Scholar
  23. 23.
    Hirvikorpi, M., Knuutila, T., Johnsson, M., Nevalainen, O.: A general approach to grouping of PCB assembly jobs. Int. J. Comput. Integr. Manuf. 18(8), 710–720 (2005)CrossRefGoogle Scholar
  24. 24.
    Ho, W., Ji, P.: Component scheduling for chip shooter machines: a hybrid genetic algorithm approach. Comput. Oper. Res. 30(14), 2175–2189 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ho, W., Ji, P., Dey, P.K.: Optimization of PCB component placements for the collect-and-place machines. Int. J. Adv. Manuf. Technol. 37(7), 828–836 (2008)CrossRefGoogle Scholar
  26. 26.
    ILOG Inc.: CPLEX linear optimizer and mixed integer optimizer v. 11.0. Website http://www.ilog.com (2009)
  27. 27.
    Ji, P., Wan, Y.F.: Planning for printed circuit board assembly: the state-of-the-art review. Int. J. Comput. Appl. Technol. 14(4), 136–144 (2001)CrossRefGoogle Scholar
  28. 28.
    Kazaz, B., Altınkemer, K.: Optimization of multi-feeder (depot) printed circuit board manufacturing with error guarantees. Eur. J. Oper. Res. 150(2), 370–394 (2003)CrossRefzbMATHGoogle Scholar
  29. 29.
    Knuutila, T., Pyottiala, S., Nevalainen, O.S.: Minimizing the number of pickups on a multi-head placement machine. J. Oper. Res. Soc. 58(1), 115 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kulak, O., Yilmaz, I.O., Günther, H.O.: PCB assembly scheduling for collect-and-place machines using genetic algorithms. Int. J. Prod. Res. 45(17), 3949–3969 (2007)CrossRefzbMATHGoogle Scholar
  31. 31.
    Kumar, R., Luo, Z.: Optimizing the operation sequence of a chip placement machine using TSP model. IEEE Trans. Electron. Packag. Manuf. 26(1), 14–21 (2003)CrossRefGoogle Scholar
  32. 32.
    Lapierre, S.D., Debargis, L., Soumis, F.: Balancing printed circuit board assembly line systems. Int. J. Prod. Res. 38(16), 3899–3911 (2000)CrossRefzbMATHGoogle Scholar
  33. 33.
    Leu, M.C., Wong, H., Ji, Z.: Planning of component placement/insertion sequence and feeder setup in PCB assembly using genetic algorithm. J. Electron. Packag. 115(4), 424 (1993)CrossRefGoogle Scholar
  34. 34.
    Li, S., Hu, C., Tian, F.: Enhancing optimal feeder assignment of the multi-head surface mounting machine using genetic algorithms. Appl. Soft Comput. J. 8(1), 522–529 (2008)CrossRefGoogle Scholar
  35. 35.
    Parkhi, K.: Printed circuit board: world outlook. Tech. Rep. 844-F2, Visant Strategies, Inc. (2007)Google Scholar
  36. 36.
    Salonen, K., Smed, J., Johnsson, M., Nevalainen, O.: Grouping and sequencing PCB assembly jobs with minimum feeder setups. Robot. Comput. Integr. Manuf. 22(4), 297–305 (2006)CrossRefGoogle Scholar
  37. 37.
    Sarvanov, V.I., Doroshoko, N.N.: The approximate solution of the travelling salesman problem by a local search algorithm with scanning neighborhoods of factorial cardinality in cubic time. Softw.: Algorithms Programs 31, 11–13 (1981)Google Scholar
  38. 38.
    Seth, A., Klabjan, D., Ferreira, P.M.: Analyses of advanced iterated tour partitioning heuristics for generalized vehicle routing problems. Tech. rep., Northwestern University. http://www.klabjan.dynresmanagement.com (2009)
  39. 39.
    SIPLACE-Americas. Siemens automation electronic assembly systems. Siemens’ official website http://ea.automation.siemens.com (2009)
  40. 40.
    Smed, J., Johnsson, M., Johtela, T., Nevalainen, O.: Techniques and applications of production planning in electronics manufacturing systems. Tech. Rep. 320, Turku Centre for Computer Science (1999)Google Scholar
  41. 41.
    Su, C., Ho, L., Fu, H.: A novel tabu search approach to find the best placement sequence and magazine assignment in dynamic robotics assembly. Integr. Manuf. Syst. 9(6), 366–376 (1998)CrossRefGoogle Scholar
  42. 42.
    Tirpak, T.M., Nelson, P.C., Asmani, A.J.: Optimization of revolver head SMT machines using adaptive simulated annealing (ASA). In: Proceedings of the Twenty-Sixth IEEE/CPMT International Electronics Manufacturing Technology Symposium, pp. 214–220 (2000)Google Scholar
  43. 43.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on discrete mathematics and applications. Society for Industrial and Applied Mathematics (2002)Google Scholar
  44. 44.
    Wilhelm, W.E., Arambula, I., Choudhry, N.N.D.: Optimizing picking operations on dual-head placement machines. IEEE Trans. Autom. Sci. Eng. [see also IEEE Transactions on Robotics and Automation] 3(1), 1–15 (2006)Google Scholar
  45. 45.
    Wilhelm, W.E., Choudhry, N.D., Damodaran, P.: A model to optimize placement operations on dual-head placement machines. Discrete Optim. 4(2), 232–256 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Wilhelm, W.E., Tarmy, P.K.: Circuit card assembly on tandem turret-type placement machines. IIE Trans. 35(7), 627–645 (2003)CrossRefGoogle Scholar
  47. 47.
    Yilmaz, I., Günther, H.-O.: A group setup strategy for PCB assembly on a single automated placement machine. In: Haasis, H.-D., Kopfer, H., Schönberger, J. (eds.) Operations Research. Springer, Berlin, Heidelberg pp. 143–148 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2015

Authors and Affiliations

  • Anupam Seth
    • 1
  • Diego Klabjan
    • 2
    Email author
  • Placid M. Ferreira
    • 1
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Industrial Engineering and Management SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations