Skip to main content

The L-shape search method for triobjective integer programming

Abstract

We present a new criterion space search method, the L-shape search method, for finding all nondominated points of a triobjective integer program. The method is easy to implement, and is more efficient than existing methods. Moreover, it is intrinsically well-suited for producing high quality approximate nondominated frontiers early in the search process. An extensive computational study demonstrates its efficacy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag Sci 27, 73–78 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  2. Belotti, P., Soylu, B., Wiecek, M.: A branch-and-bound algorithm for biobjective mixed-integer programs (2013). http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf

  3. Benson, H.P., Sun, E.: A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of multiple objective linear program. Eur. J. Oper. Res. 139, 26–41 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  4. Beume, N., Fonseca, C., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13, 1075–1082 (2009)

    Article  Google Scholar 

  5. Boland, N., Charkhgard, H., Savelsbergh, M.: A criterion space search algorithm for biobjective integer programming: the balanced-box method. INFORMS J. Comput. (to appear)

  6. Bowman, V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Thieriez, H., Zionts, S. (eds.) Multiple Criteria Decision Making, pp. 76–85. Springer, Berlin (1976)

  7. Brunsch, T., Goyal, N., Rademacher, L., Röglin, H.: Lower bounds for the average and smoothed number of pareto-optima. Theory Comput. 10(10), 237–256 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  8. Castillo Tapia, M., Coello Coello, C.A.: Applications of multi-objective evolutionary algorithms in economics and finance: a survey. CEC 2007. IEEE Congr. Evol. Comput. 2007, 532–539 (2007)

    Google Scholar 

  9. Chalmet, L.G., Lemonidis, L., Elzinga, D.J.: An algorithm for the bi-criterion integer programming problem. Eur. J. Oper. Res. 25, 292–300 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  10. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology. Elsevier Science, New York (1983)

    MATH  Google Scholar 

  11. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2007)

    MATH  Google Scholar 

  12. Cohon, J.: Multiobjective Programming and Planning. Academic Press, New York (1978)

    MATH  Google Scholar 

  13. Dächert, K., Klamroth, K.: A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization problems. J. Glob. Optim. 61(4), 643–676 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  14. Deb, K., Pratap, A.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Dhaenens, M., Lemesre, J., Talbi, E.G.: K-PPM: a new exact method to solve multi-objective combinatorial optimization problems. Eur. J. Oper. Res. 200(1), 45–53 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  16. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  17. Ehrgott, M.: A discussion of scalarization techniques for multiple objective integer programming. Ann. Oper. Res. 147, 343–360 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  18. Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective combinatorial optimization. Top 12(1), 1–63 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  19. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s outer approximation algorithm. J. Glob. Optim. 52, 757–778 (2012)

    Article  MATH  Google Scholar 

  20. Hamacher, W.H., Pedersen, C.R., Ruzika, S.: Finding representative systems for discrete bicriterion optimization problems. Oper. Res. Lett. 35, 336–344 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  21. Heyde, F., Löhne, A.: Geometric duality in multiple objective linear programming. SIAM J. Optim. 19(2), 836–845 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  22. Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  23. Klein, D., Hannan, E.: An algorithm for the multiple objective integer linear programming problem. Eur. J. Oper. Res. 9(4), 378–385 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  24. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 169, 932–942 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  25. Lei, D.: Multi-objective production scheduling: a survey. Int. J. Adv. Manuf. Technol. 43(9), 926–938 (2009)

    Article  Google Scholar 

  26. Lokman, B., Köksalan, M.: Finding all nondominated points of multi-objective integer programs. J. Glob. Optim. 57(2), 347–365 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  27. Lust, T., Teghem, J.: The multiobjective traveling salesman problem: a survey and a new approach. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. Studies in Computational Intelligence, vol. 272, pp. 119–141. Springer, Berlin (2010)

  28. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscipl. Optim. 26(6), 369–395 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  29. Özlen, M., Azizoğlu, M.: Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur. J. Oper. Res. 199, 25–35 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  30. Özlen, M., Burton, B.A., MacRae, C.A.G.: Multi-objective integer programming: an improved recursive algorithm. J. Optim. Theory Appl. 160(2), 470–482 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  31. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: 41st Annual Symposium on Foundations of Computer Science. Proceedings., pp. 86–92 (2000)

  32. Sayın, S.: Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Program. 87(3), 543–560 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  33. Steuer, R.E., Choo, E.: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  34. Stidsen, T., Andersen, K.A., Dammann, B.: A branch and bound algorithm for a class of biobjective mixed integer programs. Manag. Sci. 60(4), 1009–1032 (2014)

    Article  Google Scholar 

  35. Sylva, J., Crema, A.: A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158, 46–55 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  36. Vincent, T., Seipp, F., Ruzika, S., Przybylski, A., Gandibleux, X.: Multiple objective branch and bound for mixed 0–1 linear programming: corrections and improvements for the biobjective case. Comput. Oper. Res. 40(1), 498–509 (2013)

    MathSciNet  Article  Google Scholar 

  37. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1), 32–49 (2011)

    Article  Google Scholar 

  38. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 4403, pp. 862–876 (2007)

  39. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization. Lecture Notes in Computer Science, vol. 5252, pp. 373–404 (2008)

  40. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the time and effort that the two anonymous reviewers spent on both the original and the revised version of the manuscript. Their detailed and constructive comments have results in a stronger, more readable, and more comprehensive paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Charkhgard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boland, N., Charkhgard, H. & Savelsbergh, M. The L-shape search method for triobjective integer programming. Math. Prog. Comp. 8, 217–251 (2016). https://doi.org/10.1007/s12532-015-0093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-015-0093-3

Mathematics Subject Classification

  • 90C29 (Multi-objective and goal programming)
  • 90C10 (Integer programming)