CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization

An Erratum to this article was published on 12 December 2015

Abstract

The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative for the instances available online. Since current file formats were found incapable, we embrace the new Conic Benchmark Format as standard for conic optimization. Tools are provided to aid integration of this format with other software packages.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Alizadeh, F., Goldfarb, G.: Second-order cone programming. Math. Progr. 51, 3–51 (2003)

    MathSciNet  Google Scholar 

  2. 2.

    Andersen, K.D., Christiansen, E., Overton, M.L.: Computing limit loads by minimizing a sum of norms. SIAM J. Sci. Comput. 19(3), 1046–1062 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Anjos, M.F., Burer, S.: On handling free variables in interior-point methods for conic linear optimization. SIAM J. Optim. 18(4), 1310–1325 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Ben-tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications, vol. 2 of MPS-SIAM series on optimization. SIAM. ISBN: 978-0-89871-491-3 (2001)

  5. 5.

    Benjamin, A.T.: Sensible rules for remembering duals–the SOB method. SIAM Rev. 37(1), 85–87 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In: Mixed Integer Nonlinear Programming, volume 154 of the IMA Volumes in Mathematics and its Applications, pp. 427–444. Springer, New York. ISBN: 978-1-4614-1926-6 (2012)

  7. 7.

    Bonami, P., Kilinc, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. Mix. Int. Nonlinear Progr. 154, 1–39 (2012)

    Article  MATH  Google Scholar 

  8. 8.

    Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods Softw. 11(1), 683–690 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press. https://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf (2004)

  10. 10.

    Chinneck, J.W.: Feasibility and infeasibility in optimization. In: International Series in Operations Research and Management Science, vol. 118, Springer, US, Boston, MA. ISBN: 978-0-387-74931-0 (2008)

  11. 11.

    Christiansen, E., Andersen, K.D.: Computation of collapse states with von Mises type yield condition. Int. J. Numer. Meth. Eng. 46(8), 1185–1202 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Coleman, J.O., Vanderbei, R.J.: Random-process formulation of computationally efficient performance measures for wideband arrays in the far field. In: Proceedings of the 42nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 761–764 (1999)

  13. 13.

    Coleman, J.O., Scholnik, D.P., Brandriss, J.J.: A specification language for the optimal design of exotic FIR filters with second-order cone programs. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers 1, 341–345 (2002)

    Google Scholar 

  14. 14.

    Conn, A.R., Gould, N.I.M., Toint, P.L.: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comput. 50(182), 399–430 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    de Klerk, E., Sotirov, R.: A new library of structured semidefinite programming instances. Optim. Methods Softw. 24(6), 959–971 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Drewes, S.: Mixed integer second order cone programming. PhD thesis, Department of Mathematics, Technical University Darmstadt. http://www3.mathematik.tu-darmstadt.de/fileadmin/home/users/82/DissertationDrewes.pdf (2009)

  17. 17.

    Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf Serv Oper Manag 8(1), 92–97 (2006)

    Google Scholar 

  18. 18.

    Fair Isaac Corporation. Xpress-optimizer reference manual, Release 20.00. Technical report XPRESS2013. http://www.fico.com/en/wp-content/secure_upload/Xpress-Optimizer-Refernce-Manual.pdf (2009)

  19. 19.

    Friberg, H.A.: The conic benchmark format: version 1 - technical reference manual. Technical Report E-0047, Department of Wind Energy, Technical University of Denmark. http://orbit.dtu.dk/services/downloadRegister/88492586/Conic_Benchmark_Format.pdf (2014)

  20. 20.

    Gay, D.M.: Electronic mail distribution of linear programming test problems. Math. Progr. Soc. COAL Newslett. 13, 10–12 (1985)

    Google Scholar 

  21. 21.

    Glineur, F.: Conic optimization: an elegant framework for convex optimization. Belg. J. Oper. Res. Stat. Comput. Sci. 41, 5–28 (2001)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Góez, J.C.: Mixed integer second order cone optimization disjunctive conic cuts: theory and experiments. PhD thesis, Lehigh University (2013)

  23. 23.

    Gruber, G., Rendl, F.: Computational experience with ill-posed problems in semidefinite programming. Comput. Optim. Appl. 21(2), 201–212 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separable convex quadratic transportation-cost UFL. Technical report, IBM Research Report RC24213. http://domino.watson.ibm.com/library/cyberdig.nsf/papers/F93A77B97033B1878525729F0051C343/$File/rc24213.pdf (2007)

  25. 25.

    Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual - Version 5.6. Technical report. http://www.gurobi.com/documentation/5.6/reference-manual/refman.pdf (2013)

  26. 26.

    Härter, V., Jansson, C., Lange, M.: VSDP: A Matlab toolbox for verified semidefinite-quadratic-linear programming. Technical report, Institute for Reliable Computing, Hamburg University of Technology. http://www.ti3.tu-harburg.de/jansson/vsdp/VSDP2012Guide.pdf, (2012)

  27. 27.

    IBM Corporation. IBM ILOG CPLEX optimization studio V12.6.0 documentation. Technical report. www-01.ibm.com/support/knowledgecenter/SSSA5P_12.6.0 (2014)

  28. 28.

    Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. Theor. Comput. Sci. 479, 43–69 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Jansson, C.: Guaranteed accuracy for conic programming problems in vector lattices. Technical report, Institute for Reliable Computing, Technical University Hamburg.arXiv:0707.4366v1 (2007)

  30. 30.

    Kobayashi, K., Kim, S., Kojima, M.: Sparse second order cone programming formulations for convex optimization problems. J. Oper. Res. Soc. Jpn 51(3), 241–264 (2008)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Koch, T.: The final NETLIB-LP results. Oper Res Lett 32(2), 138–142 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Koch, T., Achterberg, T., Andersen, E.D., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.D., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math Program Comput 3(2), 103–163 (2011)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)

    Google Scholar 

  35. 35.

    Mars, S., Schewe, L.: An SDP-package for SCIP. Technical Report August, TU Darmstadt. http://www.opt.tu-darmstadt.de/~smars/scip_sdp.html (2012)

  36. 36.

    Mittelmann, H.D.: MISOCP and large SOCP benchmark. http://plato.asu.edu/ftp/socp.html (2014)

  37. 37.

    MOSEK ApS. The MOSEK C optimizer API manual, Version 7.0. technical report. http://docs.mosek.com/7.0/capi.pdf (2013)

  38. 38.

    Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming, vol. 13. SIAM, Philadelphia. ISBN: 978-0-89871-319-0 (1994)

  39. 39.

    Nesterov, Y., Todd, M.J., Ye, Y.: Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems. Math. Progr. 84(2), 227–267 (1999)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Pataki, G., Schmieta, S.H.: The DIMACS library of semidefinite-quadratic-linear programs. Technical report, Computational Optimization Research Center, Columbia University. http://dimacs.rutgers.edu/Challenges/Seventh/Instances/lib.ps (2002)

  41. 41.

    Permenter, F., Parrilo, P.A.: Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone, (2014).arXiv:1408.4685

  42. 42.

    Permenter, F., Friberg, H.A., Andersen, E.D.: Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach. http://www.optimization-online.org/DB_HTML/2015/09/5104.html (2015)

  43. 43.

    Perregaard, M.: Advances in convex quadratic integer optimization with xpress (2014). In: Presented at INFORMS Annual Meeting 2014

  44. 44.

    Pólik, I.: Conic optimization software. In: Cochran, J.J., Cox Jr, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2011)

    Google Scholar 

  45. 45.

    Pólik, I., Terlaky, T.: New stopping criteria for detecting infeasibility in conic optimization. Optim. Lett. 3(2), 187–198 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Renegar, J.: Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5(3), 506–524

  47. 47.

    Sagnol, G.: PICOS: a python interface for conic optimization solvers. http://picos.zib.de (2015)

  48. 48.

    Skajaa, A., Andersen, E.D., Ye, Y.: Warmstarting the homogeneous and self-dual interior point method for linear and conic quadratic problems. Math. Progr. Comput. 5(1), 1–25 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Skutella, M.: Convex quadratic and semidefinite programming relaxations in scheduling. J. ACM 48(2), 206–242 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Sturm, J.F.: Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12, 625–653 (1999)

  51. 51.

    The MathWorks, Inc. MATLAB Primer, R2013b. Technical report. http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf (2013)

  52. 52.

    Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Progr. 95(2), 189–217 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programs. INFORMS J. Comput. 20, 438–450 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  54. 54.

    Waki, H., Muramatsu, M.: Facial reduction algorithms for conic optimization problems. J. Optim. Theor Appl. 158(1), 188–215 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Waki, H., Nakata, M., Muramatsu, M.: Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. Comput Optim Appl 53(3), 823–844 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  56. 56.

    Wiegele, A.: Biq Mac library—a collection of max-cut and quadratic 0–1 programming instances of medium size Quadratic 0–1 Programming problems. Technical report, Alpen-Adria-Universität Klagenfurt. http://biqmac.uni-klu.ac.at/biqmaclib.html (2007)

  57. 57.

    Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: SDPA 7. Technical report. http://www.optimization-online.org/DB_HTML/2010/01/2531.html (2010)

  58. 58.

    Ziegler, H.: Solving certain singly constrained convex optimization problems in production planning. Oper Res. Lett. 1(6), 246–252 (1982)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

The author owe a special thanks to Erling D. Andersen and Mathias Stolpe who supervised the work on CBLIB, and to Ambros Gleixner and Thorsten Koch for hosting and maintaining the benchmarking library at Zuse Institute Berlin. Another great thank you goes to the anonymous peer reviewers for their valuable feedback, and to the many who has contributed instances or given feedback to drive the benchmark library forward. The author, Henrik A. Friberg, was funded by MOSEK ApS and the Danish Ministry of Higher Education and Science through the Industrial PhD project “Combinatorial Optimization over Second-Order Cones and Industrial Applications”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henrik A. Friberg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friberg, H.A. CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization. Math. Prog. Comp. 8, 191–214 (2016). https://doi.org/10.1007/s12532-015-0092-4

Download citation

Keywords

  • Problem instances
  • Conic programming
  • Mixed integer programming

Mathematics Subject Classification

  • 90C90
  • 90C25
  • 90C11