Skip to main content
Log in

Solving network design problems via iterative aggregation

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

In this work, we present an exact approach for solving network design problems that is based on an iterative graph aggregation procedure. The scheme allows existing preinstalled capacities. Starting with an initial aggregation, we solve a sequence of network design master problems over increasingly fine-grained representations of the original network. In each step, a subproblem is solved that either proves optimality of the solution or gives a directive where to refine the representation of the network in the subsequent iteration. The algorithm terminates with a globally optimal solution to the original problem. Our implementation uses a standard integer programming solver for solving the master problems as well as the subproblems. The computational results on random and realistic instances confirm the profitable use of the iterative aggregation technique. The computing time often reduces drastically when our method is compared to solving the original problem from scratch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balas, E.: Solution of large-scale transportation problems through aggregation. Oper. Res. 13(1), 82–93 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics, vol. 1, pp. 145–162. Elsevier (1977)

  5. Costa, A.M.: A survey on Benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)

    Article  MathSciNet  Google Scholar 

  6. Crainic, T.G., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. Discrete Appl. Math. 112, 73–99 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS implementation challenge—shortest paths. http://www.dis.uniroma1.it/~challenge9/ (2006)

  8. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Progr. A 91(2), 201–213 (2002)

    Article  MATH  Google Scholar 

  9. Dudkin, L., Rabinovich, I., Vakhutinsky, I.: Iterative aggregation theory. Number 111 in Pure and applied mathematics. Dekker, New York (1987)

    Google Scholar 

  10. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Math. Progr. Series B 124, 175–182 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Francis, V.E.: Aggregation of network flow problems. Ph.D. thesis, University of California (1985)

  12. Geisberger, R.: Advanced route planning in transportation networks. Ph.D. thesis, Karlsruhe Institute of Technology (2011)

  13. Gendron, B., Crainic, T.G., Frangioni, A.: Multicommodity capacitated network design. In: Soriano, P., Sansò, B. (eds.) Telecommunications network planning, vol. 98, pp. 1–19. Kluwer Academic Publishers (1998)

  14. Geoffrion, A.: Lagrangean relaxation for integer programming. In: Balinski, M. (ed.) Approaches to integer programming, volume 2 of mathematical programming studies, pp. 82–114. Springer, Berlin (1974)

    Chapter  Google Scholar 

  15. Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2013)

  16. Hallefjord, A., Storoy, S.: Aggregation and disaggregation in integer programming problems. Oper. Res. 38(4), 619–623 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Progr. 96(1), 33–60 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Johnson, D.S., Lenstra, J.K., Kan, A.H.G.R.: The complexity of the network design problem. Networks 8(4), 279–285 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karwan, M., Rardin, R.: Some relationships between lagrangian and surrogate duality in integer programming. Math. Progr. 17(1), 320–334 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, S.: Surrogate programming by aggregation. Ph.D. thesis, University of California (1975)

  21. Leisten, R.: Iterative Aggregation und Mehrstufige Entscheidungsmodelle: Einordnung in Den Planerischen Kontext, Analyse Anhand Der Modelle Der Linearen Programmierung und Darstellung Am Anwendungsbeispiel Der Hierarchischen Produktionsplanung. Produktion Und Logistik. Physica (1995)

  22. Leisten, R.: An LP-aggregation view on aggregation in multi-level production planning. Ann. Oper. Res. Bd. 82, S.413–S.434 (1998)

    Article  MathSciNet  Google Scholar 

  23. Lemaréchal, C.: Lagrangian relaxation. In: Jünger, M., Naddef, D. (eds.) Computational combinatorial optimization, volume 2241 of lecture notes in computer science, pp. 112–156. Springer, Berlin (2001)

    Google Scholar 

  24. Linderoth, J., Margot, F., Thain, G.: Improving bounds on the football pool problem by integer programming and high-throughput computing. INFORMS J. Comput. 21(3), 445–457 (2009)

    Article  MATH  Google Scholar 

  25. Litvinchev, I., Tsurkov, V.: Aggregation in large-scale optimization. In: Applied optimization, vol. 83. Springer (2003)

  26. Macedo, R., Alves, C., de Carvalho, J.V., Clautiaux, F., Hanafi, S.: Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model. Eur. J. Oper. Res. 214(3), 536–545 (2011)

    Article  MATH  Google Scholar 

  27. McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for mixed integer programming. Manag. Sci. 24(3), 312–319 (1977)

    Article  MATH  Google Scholar 

  28. Newman, A.M., Kuchta, M.: Using aggregation to optimize long-term production planning at an underground mine. Eur. J. Oper. Res. 176(2), 1205–1218 (2007)

    Article  MATH  Google Scholar 

  29. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0-Survivable Network Design Library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007). Spa, Belgium (2007)

  30. Rogers, D.F., Plante, R.D., Wong, R.T., Evans, J.R.: Aggregation and disaggregation techniques and methodology in optimization. Oper. Res. 39(4), 553–582 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rosenberg, I.: Aggregation of equations in integer programming. Discrete Math. 10(2), 325–341 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift scheduling. In: Milano, M. (ed.) Principles and practice of constraint programming, lecture notes in computer science, pp. 633–646. Springer, Berlin (2012)

    Chapter  Google Scholar 

  33. Zipkin, P.H.: Aggregation in linear programming. Ph.D. thesis, Yale University (1977)

Download references

Acknowledgments

We would like to express our gratitude to Daniel Schmidt for providing us with his preferential attachment graph generator. Furthermore, we thank Andreas Bley for fruitful discussions on the topic. We gratefully acknowledge the computing resources provided by the group of Michael Jünger in Cologne. In particular, we thank Thomas Lange for technical support. We are also indebted to the anonymous reviewers for their constructive comments on this paper. We furthermore acknowledge financial support under BMBF grant 05M10WEC and thank the EnCN for support within research focus Simulation, Projects TP3 and TP6 as well as the DFG for their support within Projects A05, B06, and B07 in CRC TRR 154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bärmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bärmann, A., Liers, F., Martin, A. et al. Solving network design problems via iterative aggregation. Math. Prog. Comp. 7, 189–217 (2015). https://doi.org/10.1007/s12532-015-0079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-015-0079-1

Keywords

Mathematics Subject Classification

Navigation