Mathematical Programming Computation

, Volume 7, Issue 2, pp 189–217 | Cite as

Solving network design problems via iterative aggregation

  • Andreas Bärmann
  • Frauke Liers
  • Alexander Martin
  • Maximilian Merkert
  • Christoph Thurner
  • Dieter Weninger
Full Length Paper

Abstract

In this work, we present an exact approach for solving network design problems that is based on an iterative graph aggregation procedure. The scheme allows existing preinstalled capacities. Starting with an initial aggregation, we solve a sequence of network design master problems over increasingly fine-grained representations of the original network. In each step, a subproblem is solved that either proves optimality of the solution or gives a directive where to refine the representation of the network in the subsequent iteration. The algorithm terminates with a globally optimal solution to the original problem. Our implementation uses a standard integer programming solver for solving the master problems as well as the subproblems. The computational results on random and realistic instances confirm the profitable use of the iterative aggregation technique. The computing time often reduces drastically when our method is compared to solving the original problem from scratch.

Keywords

Aggregation Network design Combinatorial optimization Mixed-integer programming Branch-and-cut 

Mathematics Subject Classification

90C35 90C27 90C11 90C57 

Notes

Acknowledgments

We would like to express our gratitude to Daniel Schmidt for providing us with his preferential attachment graph generator. Furthermore, we thank Andreas Bley for fruitful discussions on the topic. We gratefully acknowledge the computing resources provided by the group of Michael Jünger in Cologne. In particular, we thank Thomas Lange for technical support. We are also indebted to the anonymous reviewers for their constructive comments on this paper. We furthermore acknowledge financial support under BMBF grant 05M10WEC and thank the EnCN for support within research focus Simulation, Projects TP3 and TP6 as well as the DFG for their support within Projects A05, B06, and B07 in CRC TRR 154.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Balas, E.: Solution of large-scale transportation problems through aggregation. Oper. Res. 13(1), 82–93 (1965)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics, vol. 1, pp. 145–162. Elsevier (1977)Google Scholar
  5. 5.
    Costa, A.M.: A survey on Benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Crainic, T.G., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. Discrete Appl. Math. 112, 73–99 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS implementation challenge—shortest paths. http://www.dis.uniroma1.it/~challenge9/ (2006)
  8. 8.
    Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Progr. A 91(2), 201–213 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Dudkin, L., Rabinovich, I., Vakhutinsky, I.: Iterative aggregation theory. Number 111 in Pure and applied mathematics. Dekker, New York (1987)Google Scholar
  10. 10.
    Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Math. Progr. Series B 124, 175–182 (2010)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Francis, V.E.: Aggregation of network flow problems. Ph.D. thesis, University of California (1985)Google Scholar
  12. 12.
    Geisberger, R.: Advanced route planning in transportation networks. Ph.D. thesis, Karlsruhe Institute of Technology (2011)Google Scholar
  13. 13.
    Gendron, B., Crainic, T.G., Frangioni, A.: Multicommodity capacitated network design. In: Soriano, P., Sansò, B. (eds.) Telecommunications network planning, vol. 98, pp. 1–19. Kluwer Academic Publishers (1998)Google Scholar
  14. 14.
    Geoffrion, A.: Lagrangean relaxation for integer programming. In: Balinski, M. (ed.) Approaches to integer programming, volume 2 of mathematical programming studies, pp. 82–114. Springer, Berlin (1974)CrossRefGoogle Scholar
  15. 15.
    Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2013)
  16. 16.
    Hallefjord, A., Storoy, S.: Aggregation and disaggregation in integer programming problems. Oper. Res. 38(4), 619–623 (1990)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Progr. 96(1), 33–60 (2003)MATHMathSciNetGoogle Scholar
  18. 18.
    Johnson, D.S., Lenstra, J.K., Kan, A.H.G.R.: The complexity of the network design problem. Networks 8(4), 279–285 (1978)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Karwan, M., Rardin, R.: Some relationships between lagrangian and surrogate duality in integer programming. Math. Progr. 17(1), 320–334 (1979)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Lee, S.: Surrogate programming by aggregation. Ph.D. thesis, University of California (1975)Google Scholar
  21. 21.
    Leisten, R.: Iterative Aggregation und Mehrstufige Entscheidungsmodelle: Einordnung in Den Planerischen Kontext, Analyse Anhand Der Modelle Der Linearen Programmierung und Darstellung Am Anwendungsbeispiel Der Hierarchischen Produktionsplanung. Produktion Und Logistik. Physica (1995)Google Scholar
  22. 22.
    Leisten, R.: An LP-aggregation view on aggregation in multi-level production planning. Ann. Oper. Res. Bd. 82, S.413–S.434 (1998)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lemaréchal, C.: Lagrangian relaxation. In: Jünger, M., Naddef, D. (eds.) Computational combinatorial optimization, volume 2241 of lecture notes in computer science, pp. 112–156. Springer, Berlin (2001)Google Scholar
  24. 24.
    Linderoth, J., Margot, F., Thain, G.: Improving bounds on the football pool problem by integer programming and high-throughput computing. INFORMS J. Comput. 21(3), 445–457 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Litvinchev, I., Tsurkov, V.: Aggregation in large-scale optimization. In: Applied optimization, vol. 83. Springer (2003)Google Scholar
  26. 26.
    Macedo, R., Alves, C., de Carvalho, J.V., Clautiaux, F., Hanafi, S.: Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model. Eur. J. Oper. Res. 214(3), 536–545 (2011)CrossRefMATHGoogle Scholar
  27. 27.
    McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for mixed integer programming. Manag. Sci. 24(3), 312–319 (1977)CrossRefMATHGoogle Scholar
  28. 28.
    Newman, A.M., Kuchta, M.: Using aggregation to optimize long-term production planning at an underground mine. Eur. J. Oper. Res. 176(2), 1205–1218 (2007)CrossRefMATHGoogle Scholar
  29. 29.
    Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0-Survivable Network Design Library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007). Spa, Belgium (2007)Google Scholar
  30. 30.
    Rogers, D.F., Plante, R.D., Wong, R.T., Evans, J.R.: Aggregation and disaggregation techniques and methodology in optimization. Oper. Res. 39(4), 553–582 (1991)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Rosenberg, I.: Aggregation of equations in integer programming. Discrete Math. 10(2), 325–341 (1974)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift scheduling. In: Milano, M. (ed.) Principles and practice of constraint programming, lecture notes in computer science, pp. 633–646. Springer, Berlin (2012)CrossRefGoogle Scholar
  33. 33.
    Zipkin, P.H.: Aggregation in linear programming. Ph.D. thesis, Yale University (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2015

Authors and Affiliations

  • Andreas Bärmann
    • 1
  • Frauke Liers
    • 1
  • Alexander Martin
    • 1
  • Maximilian Merkert
    • 1
  • Christoph Thurner
    • 1
  • Dieter Weninger
    • 1
  1. 1.Department Mathematik, Lehrstuhl für WirtschaftsmathematikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations