Mathematical Programming Computation

, Volume 5, Issue 1, pp 57–73 | Cite as

Implementation of a unimodularity test

  • Matthias Walter
  • Klaus TruemperEmail author
Full Length Paper


This paper describes implementation and computational results of a polynomial test of total unimodularity. The test is a simplified version of a prior method. The program also decides two related unimodularity properties. The software is available free of charge in source code form under the Boost Software License.


Unimodularity Total unimodularity Polynomial test 

Mathematics Subject Classification

05-04 combinatorics - explicit machine computation and programming 


  1. 1.
    Bixby, R.E., Cunningham, W.H.: Converting linear programs to network problems. Math. Oper. Res. 5, 321–357 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bixby, R.E., Cunningham, W.H., Rajan, R.: A decomposition algorithm for matroids. Rice University, Technical report (1986)Google Scholar
  3. 3.
    Boost Software License
  4. 4.
    Camion, P.: Matrices Totalement Unimodulaire et Problèmes Combinatoires. PhD thesis, Université Libre de Bruxelles, Bruxelles (1963)Google Scholar
  5. 5.
    Cunningham, W.H., Edmonds, J.: Decomposition of linear systems, (unpublished). (1965)Google Scholar
  6. 6.
    Edmonds, J.: Minimum partition of a matroid into independet subsets. J. Res. Natl. Bur. Stand. (B) 69, 67–72 (1965)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fujishige, S.: An efficient \(pq\)-graph algorithm for solving the graph-realization problem. J. Comput. Syst. Sci. 21, 63–86 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ghouila-Houri, A.: Caracterisation des matrices totalement unimodulaires. C.R. Acad. Sci. Paris 254, 1192–1194 (1962)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. Ann. Math. Stud. 38, 223–246 (1956)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hoffman, A.J., Oppenheim, R.: Local unimodularity in the matching polytope. Ann. Discret. Math. 2, 201–209 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Seymour, P.D.: Decomposition of regular matroids. J. Comb. Theory Ser. B 28, 305–359 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151, 293–326 (1861–1862)Google Scholar
  14. 14.
  15. 15.
    Truemper, K.: Algebraic characterizations of unimodular matrices. SIAM J. Appl. Math. 35, 328–332 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Truemper, K.: Complement total unimodularity. Linear Algebra Appl. 30, 77–92 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Comb. Theory Ser. B 49, 241–281 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Truemper, K.: A decomposition theory for matroids. VII. Analysis of minimal violation matrices. J. Comb. Theory Ser. B 55, 302–335 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Truemper, K.: Matroid Decomposition (revised edn). Leibniz, Plano, TX (1998)Google Scholar
  20. 20.
    Truemper, K., Chandrasekaran, R.: Local unimodularity of matrix–vector pairs. Linear Algebra Appl. 22, 65–78 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Tutte, W.T.: A homotopy theorem for matroids I, II. Trans. Am. Math. Soc. 88, 527–552 (1958)MathSciNetGoogle Scholar
  22. 22.
    Whitney, H.: 2-isomorphic graphs. Am. J. Math. 55, 245–254 (1933)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Authors and Affiliations

  1. 1.Institute of Mathematical OptimizationUniversity of Magdeburg “Otto von Guericke”MagdeburgGermany
  2. 2.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations