Mathematical Programming Computation

, Volume 5, Issue 1, pp 27–55 | Cite as

The time dependent traveling salesman problem: polyhedra and algorithm

  • Hernán Abeledo
  • Ricardo FukasawaEmail author
  • Artur Pessoa
  • Eduardo Uchoa
Full Length Paper


The time dependent traveling salesman problem (TDTSP) is a generalization of the classical traveling salesman problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. In this work, we study the polytope associated to the TDTSP formulation by Picard and Queyranne, which can be viewed as an extended formulation of the TSP. We determine the dimension of the TDTSP polytope and identify several families of facet-defining cuts. We obtain good computational results with a branch-cut-and-price algorithm using the new cuts, solving almost all instances from the TSPLIB with up to 107 vertices.


Integer programming Polyhedral combinatorics Cutting planes Branch-price-and-cut Time dependent traveling salesman 

Mathematics Subject Classification (2000)

90C11 90C27 90C57 


  1. 1.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica. Extra Volume ICM 3, 645–646 (1998)Google Scholar
  2. 2.
    Balas, E., Carr, R., Fischetti, M., Simonetti, N.: New facets of the STS polytope generated from known facets of the ATS polytope. Discrete Optim. 3, 3–19 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balas, E., Fischetti, M.: Polyhedral theory for the ATSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations, pp. 117–168. Kluwer, Dordrecht (2002)Google Scholar
  4. 4.
    Bigras, L.-Ph., Gamache, M., Savard, G.: The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup time. Discrete Optim. 5, 685–699 (2008)Google Scholar
  5. 5.
    Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling salesman problem. Oper. Res. 2, 393–410 (1954)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fischetti, M., Laporte, G., Martello, S.: The delivery man problem and cumulative matroids. Oper. Res. 41, 1055–1064 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fox, K., Gavish, B., Graves, S.: An n-constraint formulation of the (time dependent) traveling salesman problem. Oper. Res. 28, 101–102 (1980)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gale, D.: A theorem of flows in networks. Pacif. J. Math. 7, 1073–1082 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Godinho, M.T., Gouveia, L., Pesneau, P.: Natural and extended formulations for the time- dependent travelling salesman problem, CIO Report8/2010, Lisbon (2010)Google Scholar
  10. 10.
    Gouveia, L., Voss, S.: A classification of formulations for the (time-dependent) traveling salesman problem. Eur. J. Oper. Res. 83, 69–82 (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Math. Program. Online first (2009)Google Scholar
  12. 12.
    Groetschel, M., Padberg, M.: On the symmetric traveling salesman problem II: lifing theorems and facets. Math. Program. 16, 281–302 (1979)zbMATHCrossRefGoogle Scholar
  13. 13.
    Groetschel, M., Padberg, M.: Polyhedral theory. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. (eds.) The Traveling Salesman Problem, pp. 251–305. Wiley, New York (1985)Google Scholar
  14. 14.
    Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)CrossRefGoogle Scholar
  15. 15.
    Hoffman, A.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. Proc. Symp. Appl. Math. 10, 113–128 (1960)CrossRefGoogle Scholar
  16. 16.
    Irnich, S., Villeneuve, D.: The shortest path problem with resource constraints and \(k\)-cycle elimination for \(k\ge 3\). INFORMS J. Comput. 18, 391–406 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lucena, A.: Time-dependent traveling salesman problem—the deliveryman case. Networks 20, 753–763 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Méndez-Díaz, I., Zabala, P., Lucena, A.: A new formulation for the traveling deliveryman problem. Discrete Appl. Math. 156, 3233–3237 (2008)Google Scholar
  19. 19.
    Melo, M., Subramanian, A.: Personal communication (2010)Google Scholar
  20. 20.
    Miranda Bront, J.J., Méndez-Díaz, I., Zabala, P.: An integer programming approach for the time dependent traveling saleman problem. Electron. Notes Discrete Math. 36, 351–358 (2010)CrossRefGoogle Scholar
  21. 21.
    Niskanen, S., Ostergard, P.R.J.: Cliquer users guide. Helsinki University of Technology. Communications Laboratory, Technical report 48 (2003)Google Scholar
  22. 22.
    Padberg, M.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Picard, J., Queyranne, M.: The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling. Oper. Res. 26, 86–110 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pessoa, A., Poggi de Aragão, M.: Robust branch-cut-and-price algorithms for vehicle routing problems. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 297–326. Springer, New York (2008)CrossRefGoogle Scholar
  25. 25.
    Pessoa, A., Uchoa, E., Poggi de Aragão, M.: A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Networks 54, 167–177 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Pessoa, A., Uchoa, E., Freitas, R.: Exact algorithm over an arc-time indexed formulations for parallel machine scheduling problems. Math. Program. Comput. 2, 259–290 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ralphs, T.K., Ladányi, L.: COIN/BCP User’s Manual. (2001)
  28. 28.
    Vajda, S.: Mathematical Programming. Addison-Wesley, New York (1961)zbMATHGoogle Scholar
  29. 29.
    Vander Wiel, R.J., Sahinidis, N.V.: An exact solution approach for the time-dependent traveling salesman problem. Naval Res. Logist. 43, 797–820 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Optimization Society 2012

Authors and Affiliations

  • Hernán Abeledo
    • 1
  • Ricardo Fukasawa
    • 2
    Email author
  • Artur Pessoa
    • 3
  • Eduardo Uchoa
    • 3
  1. 1.Department of Engineering Management and Systems EngineeringThe George Washington UniversityWashingtonUSA
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  3. 3.Departamento de Engenharia de ProduçãoUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations