# The time dependent traveling salesman problem: polyhedra and algorithm

- 787 Downloads
- 31 Citations

## Abstract

The time dependent traveling salesman problem (TDTSP) is a generalization of the classical traveling salesman problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. In this work, we study the polytope associated to the TDTSP formulation by Picard and Queyranne, which can be viewed as an extended formulation of the TSP. We determine the dimension of the TDTSP polytope and identify several families of facet-defining cuts. We obtain good computational results with a branch-cut-and-price algorithm using the new cuts, solving almost all instances from the TSPLIB with up to 107 vertices.

## Keywords

Integer programming Polyhedral combinatorics Cutting planes Branch-price-and-cut Time dependent traveling salesman## Mathematics Subject Classification (2000)

90C11 90C27 90C57## References

- 1.Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica. Extra Volume ICM
**3**, 645–646 (1998)Google Scholar - 2.Balas, E., Carr, R., Fischetti, M., Simonetti, N.: New facets of the STS polytope generated from known facets of the ATS polytope. Discrete Optim.
**3**, 3–19 (2006)MathSciNetzbMATHCrossRefGoogle Scholar - 3.Balas, E., Fischetti, M.: Polyhedral theory for the ATSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations, pp. 117–168. Kluwer, Dordrecht (2002)Google Scholar
- 4.Bigras, L.-Ph., Gamache, M., Savard, G.: The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup time. Discrete Optim.
**5**, 685–699 (2008)Google Scholar - 5.Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling salesman problem. Oper. Res.
**2**, 393–410 (1954)MathSciNetCrossRefGoogle Scholar - 6.Fischetti, M., Laporte, G., Martello, S.: The delivery man problem and cumulative matroids. Oper. Res.
**41**, 1055–1064 (1993)MathSciNetzbMATHCrossRefGoogle Scholar - 7.Fox, K., Gavish, B., Graves, S.: An n-constraint formulation of the (time dependent) traveling salesman problem. Oper. Res.
**28**, 101–102 (1980)MathSciNetCrossRefGoogle Scholar - 8.Gale, D.: A theorem of flows in networks. Pacif. J. Math.
**7**, 1073–1082 (1957)MathSciNetzbMATHCrossRefGoogle Scholar - 9.Godinho, M.T., Gouveia, L., Pesneau, P.: Natural and extended formulations for the time- dependent travelling salesman problem, CIO Report8/2010, Lisbon (2010)Google Scholar
- 10.Gouveia, L., Voss, S.: A classification of formulations for the (time-dependent) traveling salesman problem. Eur. J. Oper. Res.
**83**, 69–82 (1995)zbMATHCrossRefGoogle Scholar - 11.Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Math. Program. Online first (2009)Google Scholar
- 12.Groetschel, M., Padberg, M.: On the symmetric traveling salesman problem II: lifing theorems and facets. Math. Program.
**16**, 281–302 (1979)zbMATHCrossRefGoogle Scholar - 13.Groetschel, M., Padberg, M.: Polyhedral theory. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. (eds.) The Traveling Salesman Problem, pp. 251–305. Wiley, New York (1985)Google Scholar
- 14.Hall, P.: On representatives of subsets. J. Lond. Math. Soc.
**10**, 26–30 (1935)CrossRefGoogle Scholar - 15.Hoffman, A.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. Proc. Symp. Appl. Math.
**10**, 113–128 (1960)CrossRefGoogle Scholar - 16.Irnich, S., Villeneuve, D.: The shortest path problem with resource constraints and \(k\)-cycle elimination for \(k\ge 3\). INFORMS J. Comput.
**18**, 391–406 (2006)MathSciNetzbMATHCrossRefGoogle Scholar - 17.Lucena, A.: Time-dependent traveling salesman problem—the deliveryman case. Networks
**20**, 753–763 (1990)MathSciNetzbMATHCrossRefGoogle Scholar - 18.Méndez-Díaz, I., Zabala, P., Lucena, A.: A new formulation for the traveling deliveryman problem. Discrete Appl. Math.
**156**, 3233–3237 (2008)Google Scholar - 19.Melo, M., Subramanian, A.: Personal communication (2010)Google Scholar
- 20.Miranda Bront, J.J., Méndez-Díaz, I., Zabala, P.: An integer programming approach for the time dependent traveling saleman problem. Electron. Notes Discrete Math.
**36**, 351–358 (2010)CrossRefGoogle Scholar - 21.Niskanen, S., Ostergard, P.R.J.: Cliquer users guide. Helsinki University of Technology. Communications Laboratory, Technical report 48 (2003)Google Scholar
- 22.Padberg, M.: On the facial structure of set packing polyhedra. Math. Program.
**5**, 199–215 (1973)MathSciNetzbMATHCrossRefGoogle Scholar - 23.Picard, J., Queyranne, M.: The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling. Oper. Res.
**26**, 86–110 (1978)MathSciNetzbMATHCrossRefGoogle Scholar - 24.Pessoa, A., Poggi de Aragão, M.: Robust branch-cut-and-price algorithms for vehicle routing problems. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 297–326. Springer, New York (2008)CrossRefGoogle Scholar
- 25.Pessoa, A., Uchoa, E., Poggi de Aragão, M.: A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Networks
**54**, 167–177 (2009)MathSciNetzbMATHCrossRefGoogle Scholar - 26.Pessoa, A., Uchoa, E., Freitas, R.: Exact algorithm over an arc-time indexed formulations for parallel machine scheduling problems. Math. Program. Comput.
**2**, 259–290 (2010)MathSciNetzbMATHCrossRefGoogle Scholar - 27.Ralphs, T.K., Ladányi, L.: COIN/BCP User’s Manual. http://www.coin-or.org/Presentations/bcp-man.pdf (2001)
- 28.Vajda, S.: Mathematical Programming. Addison-Wesley, New York (1961)zbMATHGoogle Scholar
- 29.Vander Wiel, R.J., Sahinidis, N.V.: An exact solution approach for the time-dependent traveling salesman problem. Naval Res. Logist.
**43**, 797–820 (1996)MathSciNetzbMATHCrossRefGoogle Scholar