Optimal sensitivity based on IPOPT


We introduce a flexible, open source implementation that provides the optimal sensitivity of solutions of nonlinear programming (NLP) problems, and is adapted to a fast solver based on a barrier NLP method. The program, called sIPOPT evaluates the sensitivity of the Karush–Kuhn–Tucker (KKT) system with respect to perturbation parameters. It is paired with the open-source IPOPT NLP solver and reuses matrix factorizations from the solver, so that sensitivities to parameters are determined with minimal computational cost. Aside from estimating sensitivities for parametric NLPs, the program provides approximate NLP solutions for nonlinear model predictive control and state estimation. These are enabled by pre-factored KKT matrices and a fix-relax strategy based on Schur complements. In addition, reduced Hessians are obtained at minimal cost and these are particularly effective to approximate covariance matrices in parameter and state estimation problems. The sIPOPT program is demonstrated on four case studies to illustrate all of these features.

This is a preview of subscription content, access via your institution.


  1. 1

    Wächter A., Biegler L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2

    Fiacco A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Mathematics in Science and Engineering, vol. 165. Academic Press, Dublin (1983)

    Google Scholar 

  3. 3

    Fiacco A.V., Ishizuka Y.: Sensitivity and stability analysis for nonlinear programming. Ann. Oper. Res. 27, 215–236 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4

    Büskens H., Maurer C.: Sensitivity analysis and real-time control of parametric control problems using nonlinear programming methods. In: Grötschel, M., Krumke, S., Rambau, J. (eds) Online Optimization of Large-scale Systems, pp. 57–68. Springer, Berlin (2001)

    Google Scholar 

  5. 5

    Kyparisis J.: Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers. Math. Oper. Res. 15(2), 286–298 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6

    Kojima M.: Strongly stable stationary solutions in nonlinear programs. In: Robinson, S.M. (eds) Analysis and Computation of Fixed Points, pp. 93–138. Academic Press, New York (1980)

    Google Scholar 

  7. 7

    Kojima M., Hirabayashi R.: Continuous deformation of nonlinear programs. Math. Program. Study 21, 150–198 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8

    Jongen H.T., Jonker P., Twilt F.: Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  9. 9

    Jongen H.T., Meer K., Triesch E.: Optimization Theory. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  10. 10

    Fiacco, A.V. Ghaemi, A.: A user’s manual for SENSUMT. A penalty function computer program for solution, sensitivity analysis and optimal bound value calculation in parametric nonlinear programs. Technical Report T-434, Management Science and Engineering, George Washington University (1980)

  11. 11

    Ganesh N., Biegler L.T.: A reduced hessian strategy for sensitivity analysis of optimal flowsheets. AIChE 33, 282–296 (1987)

    Article  Google Scholar 

  12. 12

    Wolbert D., Joulia X., Koehret B., Biegler L.T.: Flowsheet optimization and optimal sensitivity analysis using exact derivatives. Comput. Chem. Eng. 18, 1083 (1994)

    Article  Google Scholar 

  13. 13

    Forbes J., Marlin T.E.: Design cost: a systematic approach to technology selection for model-based real-time optimization systems. Comput. Chem. Eng. 20, 717–734 (1996)

    Article  Google Scholar 

  14. 14

    Diehl M., Findeisen R., Allgöwer F.: A stabilizing real-time implementation of nonlinear model predictive control. In: Biegler, L.T., Keyes, D., Ghattas, O., van Bloemen Waanders, B., Heinkenschloss, M. (eds) Real-Time PDE-Constrained Optimization, pp. 25–52. SIAM, Philadelphia (2007)

    Google Scholar 

  15. 15

    Kadam, J. Marquardt, W.: Sensitivity-based solution updates in closed-loop dynamic optimization. In: Proceedings of the DYCOPS 7 Conference. Elsevier, Amsterdam (2004)

  16. 16

    Zavala V.M., Biegler L.T.: The advanced-step NMPC controller: optimality, stability and robustness. Automatica 45(1), 86–93 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17

    Forsgren A., Gill P.E., Wright M.H.: Interior point methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18

    Guddat J., Guerra Vazquez F., Jongen H.T.: Parametric Optimization: Singularities, Pathfollowing and Jumps. Teubner, Stuttgart (1990)

    MATH  Google Scholar 

  19. 19

    Robinson S.M.: Generalized equations and their solutions, part II: applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)

    MATH  Article  Google Scholar 

  20. 20

    Diehl, M.: Real-Time Optimization for Large Scale Nonlinear Processes. Ph.D. thesis, Universität Heidelberg (2001). http://www.ub.uni-heidelberg.de/archiv/1659/

  21. 21

    Zavala, V.M.: Computational Strategies for the Operation of Large-Scale Chemical Processes. Ph.D. thesis, Carnegie Mellon University (2008)

  22. 22

    Bartlett R.A., Biegler L.T.: QPSchur: a dual, active-set, schur-complement method for large-scale and structured convex quadratic programming. Optim. Eng. 7, 5–32 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23

    Fourer R., Gay D.M., Kernighan B.W.: AMPL: a modeling language for mathematical programming. Duxbury Press, Pacific Grove (2002)

    Google Scholar 

  24. 24

    Pirnay, H., López-Negrete, R., Biegler, L.T.: sIPOPT Reference Manual. Carnegie Mellon University (2011). https://projects.coin-or.org/Ipopt

  25. 25

    Rajaraman S., Hahn J., Mannan M.S.: A methodology for fault detection, isolation, and identification for nonlinear processes with parametric uncertainties. Ind. Eng. Chem. Res. 43(21), 6774–6786 (2004)

    Article  Google Scholar 

  26. 26

    Biegler L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, Philadelphia (2010)

    MATH  Book  Google Scholar 

  27. 27

    López-Negrete R., Flores-Tlacuahuac A.: Optimal start-up and product transition policies of a reactive distillation column. Ind. Eng. Chem. Res. 46, 2092–2111 (2007)

    Article  Google Scholar 

  28. 28

    Cervantes A.M., Biegler L.T.: Large-scale DAE optimization using a simultaneous NLP formulation. AIChE J. 44(5), 1038–1050 (1998)

    Article  Google Scholar 

  29. 29

    Bard Y.: Nonlinear Parameter Estimation. Academic Press, New York (1974)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lorenz T. Biegler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pirnay, H., López-Negrete, R. & Biegler, L.T. Optimal sensitivity based on IPOPT. Math. Prog. Comp. 4, 307–331 (2012). https://doi.org/10.1007/s12532-012-0043-2

Download citation


  • NLP
  • Sensitivity
  • Interior point

Mathematics Subject Classification (2000)

  • 90C30
  • 90C31
  • 90C51
  • 90-08