Skip to main content
Log in

Templates for convex cone problems with applications to sparse signal recovery

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||1 where W is arbitrary, or a combination thereof. In addition, the paper introduces a number of technical contributions such as a novel continuation scheme and a novel approach for controlling the step size, and applies results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 19(11), (2010). doi:10.1109/TIP.2010.2076294

  2. Auslender A., Teboulle M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16(3), 697–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck A., Teboulle M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A., Teboulle, M.: Convex Optimization in Signal Processing and Communications. Gradient-Based Algorithms with Applications in Signal Recovery Problems. Cambridge University Press (2010)

  5. Becker S., Bobin J., Candès E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, S., Candès, E.J., Grant, M.: Templates for first-order conic solvers user guide. Technical report (2010). Preprint. http://tfocs.stanford.edu

  7. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890 (2009). doi:10.1137/080714488 . http://link.aip.org/link/SJOCE3/v31/i2/p890/s1&Agg=doi

  8. Bertsekas D.P., Nedić A., Ozdaglar A.E.: Convex Analysis and Optimization. Athena Scientific, Cambridge (2003)

    MATH  Google Scholar 

  9. Boyd D., vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  10. Cai J.F., Candès E.J., Shen Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Eldar, Y.C., Needell, D.: Compressed sensing with coherent and redundant dictionaries. Tech. rep. (2010). Preprint available at http://arxiv.org/abs/1005.2613

  12. Candès E.J., Guo F.: New multiscale transforms, minimum total-variation synthesis: applications to edge-preserving image reconstruction. Signal Process. 82(11), 1519–1543 (2002)

    Article  MATH  Google Scholar 

  13. Candès, E.J., Plan, Y.: Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements. In: CoRR, abs/1001.0339 (2010)

  14. Candès E.J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Candès, E.J., Romberg, J.K.: Practical signal recovery from random projections. In: SPIE Conference on Computational Imaging, pp. 76–86 (2005)

  16. Candès, E.J., Romberg, J.K.: 1-magic. Technical report, Caltech (2007). http://www.acm.caltech.edu/l1magic/

  17. Candès E.J., Tao T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007)

    Article  MATH  Google Scholar 

  18. Candès E.J., Tao T.: The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    Article  Google Scholar 

  19. Candès E.J., Wakin M.B., Boyd S.P.: Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chambolle A., Pock T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ciarlet P.G.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  22. Combettes P.L., Dũng D., Vũ B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Combettes P.L., Pesquet J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Topics Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  24. Combettes P.L., Wajs V.R.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Donoho D.L., Tsaig Y.: Fast solution of 1 minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory 54(11), 4789–4812 (2008)

    Article  MathSciNet  Google Scholar 

  26. Efron B., Hastie T., Johnstone I., Tibshirani R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Elad M., Milanfar P., Rubinstein R.: Analysis versus synthesis in signal priors. Inverse Problems 23, 947–968 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Figueiredo M.A.T., Nowak R., Wright S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  29. Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326–1350 (2007). doi:10.1137/060675320 . http://link.aip.org/link/?SJE/18/1326/1

    Google Scholar 

  30. Friedman J., Hastie T., Tibshirani R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Google Scholar 

  31. Fukushima M., Mine H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12(8), 989–1000 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2010)

  33. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. In: CoRR, abs/0910.1879 (2009)

  34. Gu, M., Lim, L.H., Wu, C.J.: PARNES: a rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals. Technical report (2009). Preprint http://arxiv.org/abs/0911.0492

  35. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649–664 (1992). doi:10.1137/0802032 . http://link.aip.org/link/?SJE/2/649/1

    Google Scholar 

  36. Hale E.T., Yin W., Zhang Y.: Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hiriart-Urruty J.B., Lemaréchal C.: Convex Analysis and Minimization Algorithms, vols. I and II. Springer, Berlin (1993)

    Google Scholar 

  38. James G., Radchenko P., Lv J.: DASSO: Connections Between the Dantzig Selector and Lasso. J. R. Stat. Soc. B 71, 127–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Koh, K., Kim, S.J., Boyd, S.P.: Solver for l1-regularized least squares problems. Technical report, Stanford University. http://www.stanford.edu/~boyd/l1_ls/ (2007)

  40. Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with o(1/ε) iteration-complexity for cone programming. Math. Program. (2009). doi:10.1007/s10107-008-0261-6 . http://www.springerlink.com/index/10.1007/s10107-008-0261-6

  41. Larsen, R.M.: PROPACK: Software for Large and Sparse SVD Calculations. http://soi.stanford.edu/~rmunk/PROPACK/ (2004)

  42. Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. (2011). doi:10.1007/s10107-010-0437-8

  43. Lorenz, D.: Constructing test instances for basis pursuit denoising. Technical report. arXiv:1103.2897 (2011)

  44. Lu, Z.: Primal-dual first-order methods for a class of cone programming. INFORMS J. Comput. Preprint http://www.math.sfu.ca/~zhaosong/ResearchPapers/pdfirst_DS_2ndrev.pdf(2009)

  45. Malgouyres F., Zeng T.: A predual proximal point algorithm solving a non negative basis pursuit denoising model. Int. J. Comput. Vis. 83(3), 294–311 (2009)

    Article  Google Scholar 

  46. Mangasarian O.L., Meyer R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17, 745–752 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Moreau J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  48. Mosek ApS: The MOSEK Optimization Tools Version 2.5. http://www.mosek.com(2002)

  49. Nemirovski A., Yudin D.: Problem complexity and method efficiency in optimization. Wiley-Interscience Series in Discrete Mathematics. Wiley, New York (1983)

    Google Scholar 

  50. Nesterov Y.: A method for unconstrained convex minimization problem with the rate of convergence \({\mathcal{O}(1/k^2)}\) . Doklady AN USSR (translated as Soviet Math. Docl.) 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  51. Nesterov, Y.: On an approach to the construction of optimal methods of minimization of smooth convex functions. Ekonomika i Mateaticheskie Metody 24, 509–517 (1988, in Russian)

    Google Scholar 

  52. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization, vol. 87. Kluwer, Boston (2004)

  53. Nesterov Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nesterov, Y.: Gradient methods for minimizing composite objective function. Technical report, CORE 2007/76, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2007)

  55. Osher S., Mao Y., Dong B., Yin W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8(1), 93–111 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  57. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  58. Romberg, J.K.: The Dantzig selector and generalized thresholding. In: Proceedings of IEEE Conference on Information Science and System. Princeton, New Jersey (2008)

  59. Rudin L.I., Osher S., Fatemi E.: Nonlinear total variation noise removal algorithm. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  60. Saunders, M., Kim, B.: PDCO: Primal-dual interior method for convex objectives. Technical report, Stanford University. http://www.stanford.edu/group/SOL/software/pdco.html(2002)

  61. Starck J.L., Ngyuen M.K., Murtagh F.: Wavelets and curvelets for image deconvolution: a combined approach. Signal Process. 83, 2279–2283 (2003)

    Article  MATH  Google Scholar 

  62. Tibshirani R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  63. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. (2008). http://www.math.washington.edu/~tseng/papers.html , last accessed Sept 2009

  64. Weiss P., Blanc-Féraud L., Aubert G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wen Z., Yin W., Goldfarb D., Zhang Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput. 32(4), 1832–1857 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wright, S.J.: Solving 1-regularized regression problems. In: International Conference Combinatorics and Optimization, Waterloo (2007)

  67. Wright S.J., Nowak R.D., Figueiredo M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  68. Yin, W.: Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci. 3(4), 856–877 (2010). http://dx.doi.org/10.1137/090760350

  69. Yin W., Osher S., Goldfarb D., Darbon J.: Bregman iterative algorithms for 1 minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, S.R., Candès, E.J. & Grant, M.C. Templates for convex cone problems with applications to sparse signal recovery. Math. Prog. Comp. 3, 165–218 (2011). https://doi.org/10.1007/s12532-011-0029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-011-0029-5

Keywords

Mathematics Subject Classification (2000)

Navigation