Amestoy P., Davis T., Duff I.: An approximate minimum degree ordering. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)
MATH
Article
MathSciNet
Google Scholar
Alizadeh F., Goldfarb D.: Second-order cone programming. Math. Program. Ser. B 95, 3–51 (2003)
MATH
Article
MathSciNet
Google Scholar
Alizadeh F., Haeberly J.-P.A., Overton M.L.: Primal–dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8(3), 746–768 (1998)
MATH
Article
MathSciNet
Google Scholar
Barrett W.W., Johnson C.R., Lundquist M.: Determinantal formulation for matrix completions associated with chordal graphs. Linear Algebra Appl. 121, 265–289 (1989)
MATH
Article
MathSciNet
Google Scholar
Borchers B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)
Article
MathSciNet
Google Scholar
Borchers B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods Soft. 11(1), 683–690 (1999)
Article
MathSciNet
Google Scholar
Blair J.R.S., Peyton B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds) Graph Theory and Sparse Matrix Computation, Springer, Berlin (1993)
Google Scholar
Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Analysis, Algorithms, and Engineering Applications. Society for Pure and Applied Mathematics (2001)
Burer S.: Semidefinite programming in the space of partial positive semidefinite matrices. SIAM J. Optim. 14(1), 139–172 (2003)
MATH
Article
MathSciNet
Google Scholar
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004). http://www.stanford.edu/~boyd/cvxbook
Benson, S.J., Ye, Y.: DSDP5: Software for semidefinite programming. Technical Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, September 2005. Submitted to ACM Transactions on Mathematical Software
Chen Y., Davis T.A., Hager W.W., Rajamanickam S.: Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35(3), 1–14 (2008)
Article
Google Scholar
Davis, T.A.: The University of Florida Sparse Matrix Collection. Technical report, Department of Computer and Information Science and Engineering, University of Florida (2009)
Dahl, J., Vandenberghe, L.: CVXOPT: A Python Package for Convex Optimization. http://abel.ee.ucla.edu/cvxopt (2008)
Dahl, J., Vandenberghe, L.: CHOMPACK: Chordal Matrix Package. http://abel.ee.ucla.edu/chompack (2009)
Dahl J., Vandenberghe L., Roychowdhury V.: Covariance selection for non-chordal graphs via chordal embedding. Optim. Methods Softw. 23(4), 501–520 (2008)
MATH
Article
MathSciNet
Google Scholar
El Ghaoui L., Lebret H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)
MATH
Article
MathSciNet
Google Scholar
Fukuda M., Kojima M., Murota K., Nakata K.: Exploiting sparsity in semidefinite programming via matrix completion. I. General framework. SIAM J. Optim. 11, 647–674 (2000)
MATH
Article
MathSciNet
Google Scholar
Fujisawa K., Kojima M., Nakata K.: Exploiting sparsity in primal–dual interior-point methods for semidefinite programming. Math. Program. 79(1–3), 235–253 (1997)
MathSciNet
Google Scholar
Fourer R., Mehrotra S.: Solving symmetric indefinite systems in an interior-point approach for linear programming. Math. Program. 62, 15–39 (1993)
Article
MathSciNet
Google Scholar
Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software). http://stanford.edu/~boyd/cvx (2007)
Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (a tribute to M. Vidyasagar). Springer, Berlin (2008)
George A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345–363 (1973)
MATH
Article
MathSciNet
Google Scholar
Goldfarb D., Iyengar G.: Robust convex quadratically constrained programs. Math. Program. Ser. B 97, 495–515 (2003)
MATH
Article
MathSciNet
Google Scholar
Grone R., Johnson C.R., Sá E.M., Wolkowicz H.: Positive definite completions of partial Hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)
MATH
Article
MathSciNet
Google Scholar
Hauser R.A., Güler O.: Self-scaled barrier functions on symmetric cones and their classification. Found. Comput. Math. 2, 121–143 (2002)
MATH
MathSciNet
Google Scholar
Helmberg C., Rendl F., Vanderbei R.J., Wolkowicz H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)
MATH
Article
MathSciNet
Google Scholar
Johnson, D., Pataki, G., Alizadeh, F.: Seventh DIMACS implementation challenge: Semidefinite and related problems (2000). http://dimacs.rutgers.edu/Challenges/Seventh
Kobayashi K., Kim S., Kojima M.: Correlative sparsity in primal–dual interior-point methods for LP, SDP, and SOCP. Appl. Math. Optim. 58(1), 69–88 (2008)
MATH
Article
MathSciNet
Google Scholar
Kojima M., Shindoh S., Hara S.: Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997)
MATH
Article
MathSciNet
Google Scholar
Lauritzen S.L.: Graphical Models. Oxford University Press, Oxford (1996)
Google Scholar
Löfberg, J.: YALMIP : A Toolbox for Modeling and Optimization in MATLAB (2004)
Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)
Monteiro R.D.C.: Primal–dual path following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1995)
Article
MathSciNet
Google Scholar
Monteiro R.D.C.: Polynomial convergence of primal–dual algorithms for semidefinite programming based on Monteiro and Zhang family of directions. SIAM J. Optim. 8(3), 797–812 (1998)
MATH
Article
MathSciNet
Google Scholar
Nesterov, Yu.: Nonsymmetric potential-reduction methods for general cones. Technical Report 2006/34, CORE Discussion Paper, Université catholique de Louvain (2006)
Nesterov, Yu.: Towards nonsymmetric conic optimization. Technical Report 2006/28, CORE Discussion Paper, Université catholique de Louvain (2006)
Nakata K., Fujitsawa K., Fukuda M., Kojima M., Murota K.: Exploiting sparsity in semidefinite programming via matrix completion. II. Implementation and numerical details. Math. Program. Ser. B 95, 303–327 (2003)
MATH
Article
Google Scholar
Nesterov, Yu., Nemirovskii, A.: Interior-point polynomial methods in convex programming. Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)
Nesterov Yu.E., Todd M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22(1), 1–42 (1997)
MATH
Article
MathSciNet
Google Scholar
Nesterov Yu.E., Todd M.J.: Primal–dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998)
MATH
Article
MathSciNet
Google Scholar
Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. Society for Industrial and Applied Mathematics (2001)
Rose D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 597–609 (1970)
MATH
Article
MathSciNet
Google Scholar
Rose D.J., Tarjan R.E., Lueker G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)
MATH
Article
MathSciNet
Google Scholar
Sturm J.F.: Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)
Article
MathSciNet
Google Scholar
Sturm J.F.: Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optim. Methods Softw. 17(6), 1105–1154 (2002)
MATH
Article
MathSciNet
Google Scholar
Sturm J.F.: Avoiding numerical cancellation in the interior point method for solving semidefinite programs. Math. Program. Ser. B 95, 219–247 (2003)
MATH
Article
MathSciNet
Google Scholar
Srijuntongsiri, G., Vavasis, S.A.: A fully sparse implementation of a primal–dual interior-point potential reduction method for semidefinite programming (2004). Available at arXiv: arXiv:cs/0412009v1
Todd M.J., Toh K.C., Tütüncü R.H.: On the Nesterov–Todd direction in semidefinite programming. SIAM J. Optim. 8(3), 769–796 (1998)
MATH
Article
MathSciNet
Google Scholar
Tütüncü R.H., Toh K.C., Todd M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95, 189–217 (2003)
MATH
Article
Google Scholar
Tarjan R.E., Yannakakis M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)
MATH
Article
MathSciNet
Google Scholar
Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
MATH
Article
MathSciNet
Google Scholar
Wermuth N.: Linear recursive equations, covariance selection, and path analysis. J. Am Stat. Assoc. 75(372), 963–972 (1980)
MATH
Article
MathSciNet
Google Scholar
Waki H., Kim S., Kojima M., Muramatsu M.: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–241 (2006)
MATH
Article
MathSciNet
Google Scholar
Wright S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)
MATH
Google Scholar
Yamashita M., Fujisawa K., Kojima M.: Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003)
MATH
Article
MathSciNet
Google Scholar