Skip to main content
Log in

Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alam, S., Barrett, R., Bast, M., Fahey, M.R., Kuehn, J., McCurdy, C., Rogers, J., Roth, P., Sankaran, R., Vetter, J.S., Worley, P., Yu, W.: Early evaluation of IBM BlueGene/P, SC ’08. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pp 1–12 (2008)

  2. Almási G., Archer C., Castaños J.G., Gunnels J.A., Erway C.C., Heidelberger P., Martorell X., Moreira J.E., Pinnow K., Ratterman J., Steinmacher-Burow B.D., Gropp W., Toonen B.: Design and implementation of message-passing services for the Blue Gene/L supercomputer. IBM. J. Res. Dev. 49(2–3), 393–406 (2005)

    Article  Google Scholar 

  3. ARPREC. http://crd.lbl.gov/~dhbailey/mpdist/mpdist.html

  4. Bailey D.H.: High-precision arithmetic in scientific computation. Comput. Sci. Eng. 7(3), 54–61 (2005)

    Article  Google Scholar 

  5. Bailey, D.H., Borwein, J.M.: Highly Parallel, High-Precision Numerical Integration. LBNL-57491 (2005)

  6. Berstein Y., Lee J., Maruri-Aguilar H., Onn S., Riccomagno E., Weismantel R., Wynn H.: Nonlinear matroid optimization and experimental design. SIAM J. Discret. Math. 22(3), 901–919 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berstein, Y., Lee, J., Onn, S., Weismantel, R.: Parametric nonlinear discrete optimization over well-described sets and matroid intersections. Math. Program. (to appear)

  8. Buttari A., Dongarra J., Langou J., Langou J., Luszczek P., Kurzak J.: Mixed precision iterative refinement techniques for the solution of dense linear systems. Int. J. High. Perform. Comput. Appl. 21(4), 457–466 (2007)

    Article  Google Scholar 

  9. Chiu, G.L.-T., Gupta, M., Royyuru, A.K. (guest eds.): Blue Gene. IBM J. Res. Dev. 49(2/3) (2005)

  10. Choi J., Dongarra J., Ostrouchov S., Petitet A., Walker D., Whaley C.: Design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. Sci. Program. 5(3), 173–184 (1996)

    Google Scholar 

  11. De Loera, J., Haws, D.C., Lee, J., O’Hair, A.: Computation in multicriteria matroid optimization. ACM J. Exp. Algorithmics 14, Article No. 8, (2009)

  12. Demmel, J.: The future of LAPACK and ScaLAPACK, PARA 06: workshop on State-of-the-Art. In: Scientific and Parallel Computing, Umea, Sweden, 18–21 June 2006. http://www.cs.berkeley.edu/~demmel/cs267_Spr07/future_sca-lapack_CS267_Spr07.ppt

  13. Eisinberg A., Fedele G., Imbrogno C.: Vandermonde systems on equidistant nodes in [0, 1]: accurate computation. Appl. Math. Comput. 172, 971–984 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eisinberg A., Franzé G., Pugliese P.: Vandermonde matrices on integer nodes. Numerische Mathematik 80(1), 75–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fries A., Hunter W.G.: Minimum aberration 2k-p designs. Technometrics 22, 601–608 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harvey, N.: Algebraic algorithms for matching and matroid problems. SIAM J. Comput. (2010, to appear)

  17. Higham N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2002)

    MATH  Google Scholar 

  18. IBM Blue Gene Team: Overview of the IBM Blue Gene/P project, IBM J. Res. Dev., v52, (2008), 199–220

  19. Lee, J.: A First Course in Combinatorial Optimization. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2004)

  20. Lee J., Ryan J.: Matroid applications and algorithms. INFORMS (formerly ORSA) J. Comput. 4, 70–98 (1992)

    MATH  MathSciNet  Google Scholar 

  21. mStirling.c. http://ftp.bioinformatics.org/pub/pgetoolbox/addins/src/mStirling.c

  22. Mulmuley K., Vazirani U.V., Vazirani V.V.: Matching is as easy as matrix inversion. Combinatorica 7, 105–113 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Oxley J.G.: Matroid Theory. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1992)

    MATH  Google Scholar 

  24. Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic Statistics. Monographs on Statistics and Applied Probability, vol. 89. Chapman & Hall/CRC, Boca Raton (2001)

  25. Recski A.: Matroid theory and its applications in electric network theory and in statics. Springer, Berlin (1989)

    Google Scholar 

  26. Tweddle, I.: James Stirling’s methodus differentialis: an annotated translation of Stirling’s text. In: Sources and Studies in the History of Mathematics and Physical Sciences, Springer (2003)

  27. van de Geijn R.A., Watts J.: SUMMA: scalable universal matrix multiplication algorithm. Concurr. Pract. Experience 9(4), 255–274 (1997)

    Article  Google Scholar 

  28. VanInverse.m. http://www.mathworks.com/matlabcentral/files/8048/VanInverse.m

  29. Wu H., Wu C.F.J.: Clear two-factor interactions and minimum aberration. Ann. Stat. 30, 1496–1511 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunnels, J., Lee, J. & Margulies, S. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization. Math. Prog. Comp. 2, 103–124 (2010). https://doi.org/10.1007/s12532-010-0014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-010-0014-4

Keywords

Mathematics Subject Classification (2000)

Navigation