http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html (Blossom V code, version 1.0)
http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/tsp/
http://www.tsp.gatech.edu/vlsi/index.html
Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
Google Scholar
Applegate, D., Cook, W.: Solving large-scale matching problems. Network Flows and Matchings. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 557–576 (1993)
Ball M.O., Derigs U.: An analysis of alternate strategies for implementing matching algorithms. Networks 13, 517–549 (1983)
MATH
Article
MathSciNet
Google Scholar
Berkman O., Vishkin U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2), 221–242 (1993)
MATH
Article
MathSciNet
Google Scholar
Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11(2), 138–148, (1999). Computer code available at http://www2.isye.gatech.edu/~wcook/blossom4/
Derigs U., Metz A.: On the use of optimal fractional matchings for solving the (integer) matching problem. Computing 36, 263–270 (1986)
MATH
Article
MathSciNet
Google Scholar
Derigs U., Metz A.: Solving (large scale) matching problems combinatorially. Math. Program. 50, 113–122 (1991)
MATH
Article
MathSciNet
Google Scholar
Edmonds J.: Maximum matching and a polyhedron with 0-1 vertices. J. Res. Natl. Bur. Stand. 69, 125–130 (1965)
MATH
MathSciNet
Google Scholar
Edmonds J.: Path, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
MATH
MathSciNet
Google Scholar
Edmonds J., Johnson E.L., Lockhart S.C.: Blossom I: A Computer Code for the Matching Problem. IBM T. J. Watson Research Center, Yorktown Heights, New York (1969)
Google Scholar
Fredman M., Sedgewick R., Sleator D., Tarjan R.: The pairing heap: a new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)
MATH
Article
MathSciNet
Google Scholar
Fredman M.L., Tarjan R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)
Article
MathSciNet
Google Scholar
Gabow, H.: Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs. PhD thesis, Stanford University (1973)
Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443 (1990)
Gabow H.N., Galil Z., Spencer T.H.: Efficient implementation of graph algorithms using contraction. J. ACM 36(3), 540–572 (1989)
Article
MathSciNet
Google Scholar
Gerngross, P.: Zur implementation von edmonds’ matching algorithmus: Datenstrukturen und verschiedene varianten. Diplomarbeit, Institut fur Mathematik, Universitat Augsburg (1991)
Hochbaum, D.: Instant recognition of half integrality and 2-approximations. In: 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization (1998)
Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Implementation Challenge. American Mathematical Society, Providence (1993). Generators available at ftp://dimacs.rutgers.edu/pub/netflow/generators/matching
Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and Winston, New York (1976)
Mehlhorn K., Näher S.: LEDA: a Platform for Combinatorial and Geometric Computing. Cambridge University Press, New York (1999)
MATH
Google Scholar
Mehlhorn K., Schäfer G.: Implementation of O(nmlogn) weighted matchings in general graphs: the power of data structures. J. Exp. Algorithmics (JEA) 7, 4 (2002)
Article
Google Scholar
Moret, B., Shapiro, H.: An empirical analysis of algorithms for constructing a minimum spanning tree. In: 2nd Workshop on Algorithms and Data Structures, pp. 400–411 (1991)
Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In: Applied Computational Geometry: Towards Geometric Engineering. LNCS, vol. 1148, pp. 203–222. Springer, Heideberg (1996). Computer code available at http://www.cs.cmu.edu/quake/triangle.html
Shih W.-K., Wu S., Kuo Y.S.: Unifying maximum cut and minimum cut of a planar graph. Trans. Comput. 39(5), 694–697 (1990)
Article
MathSciNet
Google Scholar
Gabow H., Galil Z., Micali S.: An O(EV log V) algorithm for finding a maximal weighted matching in general graphs. SIAM J. Comput. 15, 120–130 (1986)
MATH
Article
MathSciNet
Google Scholar