Abstract
The traditional threshold methods used for image segmentation are effective for bi-level thresholds. In the case of complex images that contain many objects or color images, the computational complexity is significantly elevated. Multi-level threshold methods for the segmentation of color images can be seen as a complicated optimization problem. In this paper, an improved version of the Arithmetic Optimization Algorithm, called AOAa, is proposed based on the efficient search operators of Aquila Optimizer to obtain optimal threshold values in various levels of color and gray images. Otsu and Kapur’s entropy methods are used in this study as objective functions. Experiments were conducted on 16 benchmark images; COVID-19, color, and gray. The results are analyzed regarding the fitness function, peak signal-to-noise ratio (PSNR), and structural index similarity (SSIM). The obtained results showed that the proposed method got better results than several other well-established methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data is available from the authors upon reasonable request.
Change history
02 March 2024
A Correction to this paper has been published: https://doi.org/10.1007/s12530-024-09576-7
References
Abd El Aziz M, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256
Abd Elaziz M et al (2019) Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer. Expert Syst Appl 125:112–129
Abd Elaziz M et al (2021) IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing. Comput Intell Neurosci 2021:1
Abd Elaziz M, Abualigah L, Attiya I (2021) Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Future Gener Comput Syst 2021:1
Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466
Abualigah L et al (2019) Salp swarm algorithm: a comprehensive survey. Neural Comput Appl 32:1–21
Abualigah L et al (2021a) A novel evolutionary arithmetic optimization algorithm for multilevel thresholding segmentation of covid-19 ct images. Processes 9(7):1155
Abualigah L, Diabat A, Elaziz MA (2021b) Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems. J Ambient Intell Hum Comput 14:1–40
Abualigah L, Diabat A, Abd Elaziz M (2021c) Intelligent workflow scheduling for big data applications in IoT cloud computing environments. Cluster Comput 24:1–20
Abualigah L et al (2021d) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609
Abualigah L et al (2021e) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250
Abuowaida SFA et al (2021) A novel instance segmentation algorithm based on improved deep learning algorithm for multi-object images. Jordan J Comput Inf Technol (JJCIT) 7:1
Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570
Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput Appl 35(5):4099–4131
Ahmadianfar I et al (2022) INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516
Al-Khasawneh MA et al (2021) An improved chaotic image encryption algorithm using Hadoop-based MapReduce framework for massive remote sensed images in parallel IoT applications. Cluster Comput 25:1–15
Bhandari AK, Maurya S (2020) Cuckoo search algorithm-based brightness preserving histogram scheme for low-contrast image enhancement. Soft Comput 24(3):1619–1645
Chakraborty S et al (2021) COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction. Comput Biol Med 139:104984
Chen S, Zou Y, Liu PX (2021) IBA-U-Net: attentive BConvLSTM U-Net with redesigned inception for medical image segmentation. Comput Biol Med 135:104551
Dada EG et al (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6):e01802
Eid A, Kamel S, Abualigah L (2021) Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks. Neural Comput Appl 33:1–29
Ejaz K et al (2020) Hybrid segmentation method with confidence region detection for tumor identification. IEEE Access 9:35256–35278
Elaziz MA et al (2021) Boosting atomic orbit search using dynamic-based learning for feature selection. Mathematics 9(21):2786
Ewees AA et al (2021a) Modified artificial ecosystem-based optimization for multilevel thresholding image segmentation. Mathematics 9(19):2363
Ewees AA et al (2021b) Boosting arithmetic optimization algorithm with genetic algorithm operators for feature selection: case study on cox proportional hazards model. Mathematics 9(18):2321
Ezugwu AE et al (2022) Prairie dog optimization algorithm. Neural Comput Appl 34(22):20017–20065
Faramarzi A et al (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377
Ghasemi M et al (2023) Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization. J Bionic Eng. https://doi.org/10.1007/s42235-023-00437-8
Gul F et al (2021) Multi-robot space exploration: an augmented arithmetic approach. IEEE Access 9:107738–107750
Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872
Houssein EH et al (2021) An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowl-Based Syst 229:107348
Hu G et al (2023) Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization. Adv Eng Inform 58:102210
Ibrahim RA et al (2021) An electric fish-based arithmetic optimization algorithm for feature selection. Entropy 23(9):1189
Jiang Y et al (2021) An efficient binary Gradient-based optimizer for feature selection. Math Biosci Eng 18:3813–3854
Junior JRF et al (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed 159:23–30
Kandhway P, Bhandari AK (2019a) An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement. Multidimens Syst Signal Process 30(4):1859–1894
Kandhway P, Bhandari AK (2019b) Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed Tools Appl 78(16):22613–22641
Karakoyun M, Gülcü Ş, Kodaz H (2021) D-MOSG: Discrete multi-objective shuffled gray wolf optimizer for multi-level image thresholding. Eng Sci Technol Int J 24:1455
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks
Li G et al (2019) Human lesion detection method based on image information and brain signal. IEEE Access 7:11533–11542
Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323
Liang H et al (2019) Modified grasshopper algorithm-based multilevel thresholding for color image segmentation. IEEE Access 7:11258–11295
Lin S et al (2021) Enhanced slime mould algorithm for multilevel thresholding image segmentation using entropy measures. Entropy 23(12):1700
Liu X, Deng Z, Yang Y (2019) Recent progress in semantic image segmentation. Artif Intell Rev 52(2):1089–1106
Liu L et al (2021) Ant colony optimization with Cauchy and greedy Levy mutations for multilevel COVID 19 X-ray image segmentation. Comput Biol Med 136:104609
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
Mohagheghi S, Foruzan AH (2022) Developing an explainable deep learning boundary correction method by incorporating cascaded x-Dim models to improve segmentation defects in liver CT images. Comput Biol Med 140:105106
Nadimi-Shahraki MH et al (2021a) Migration-based moth-flame optimization algorithm. Processes 9(12):2276
Nadimi-Shahraki MH et al (2021b) MTV-MFO: multi-trial vector-based moth-flame optimization algorithm. Symmetry 13(12):2388
Nadimi-Shahraki MH et al (2021c) An improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems. Entropy 23(12):1637
Nadimi-Shahraki MH et al (2021d) EWOA-OPF: effective whale optimization algorithm to solve optimal power flow problem. Electronics 10(23):2975
Pare S et al (2020) Image segmentation using multilevel thresholding: a research review. Iran J Sci Technol Trans Electr Eng 44(1):1–29
Precup R-E et al (2020) Experiment-based approach to teach optimization techniques. IEEE Trans Educ 64(2):88–94
Premkumar M et al (2021) A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained optimization problems: diversity analysis and validations. IEEE Access 9:84263
Safaldin M, Otair M, Abualigah L (2021) Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks. J Ambient Intell Humaniz Comput 12(2):1559–1576
Shubham S, Bhandari AK (2019) A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed Tools Appl 78(12):17197–17238
Singh D, Shukla A (2022) Manifold optimization with MMSE hybrid precoder for Mm-Wave massive MIMO communication. Sci Technol 25(1):36–46
Song S-B et al (2020) A new automatic thresholding algorithm for unimodal gray-level distribution images by using the gray gradient information. J Petrol Sci Eng 190:107074
Sun L et al (2021) Few-shot medical image segmentation using a global correlation network with discriminative embedding. Comput Biol Med 140:105067
Tan Z, Zhang D (2020) A fuzzy adaptive gravitational search algorithm for two-dimensional multilevel thresholding image segmentation. J Ambient Intell Humaniz Comput 11(11):4983–4994
Tarkhaneh O, Shen H (2019) An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl 138:112820
Tu J et al (2021) The colony predation algorithm. J Bionic Eng 18:674–710
Vardhana M et al (2018) Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cogn Syst Res 50:10–14
Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput 10(2):151–164
Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31:1995–2014
Wang S et al (2021) An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems. Processes 9(9):1551
Wang S et al (2021) A Hybrid SSA and SMA with mutation opposition-based learning for constrained engineering problems. Comput Intell Neurosci 2021:1
Yang Y et al (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864
Yousri D et al (2021) COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions. Appl Soft Comput 101:107052
Zhang Z, Yin J (2020) Bee foraging algorithm based multi-level thresholding for image segmentation. IEEE Access 8:16269–16280
Zheng R et al (2021) Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization. Processes 9(10):1774
Zheng R et al (2022) An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems. Math Biosci Eng 19(1):473–512
Zitar RA, Abualigah L, Al-Dmour NA (2021) Review and analysis for the Red Deer algorithm. J Ambient Intell Humaniz Comput 14:1–11
Acknowledgements
The authors present their appreciation to King Saud University for funding this research through Researchers Supporting Program number (RSPD2024R704), King Saud University, Riyadh, Saudi Arabia.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised due to removal of affiliation “Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk, 71491, Saudi Arabia”.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abualigah, L., Al-Okbi, N.K., Awwad, E.M. et al. Boosted Aquila Arithmetic Optimization Algorithm for multi-level thresholding image segmentation. Evolving Systems 15, 1399–1426 (2024). https://doi.org/10.1007/s12530-023-09566-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12530-023-09566-1