Skip to main content
Log in

Lung tumor cell classification with lightweight mobileNetV2 and attention-based SCAM enhanced faster R-CNN

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Early and precise detection of lung tumor cell is paramount for providing adequate medication and increasing the survivability of the patients. To achieve this, the Enhanced Faster R-CNN with MobileNetV2 and SCAM framework is bestowed for improving the diagnostic accuracy of lung tumor cell classification. The U-Net architecture optimized by Stochastic Gradient Descent (SGD) is employed to carry out clinical image segmentation. The developed approach leverages the advantage of the lightweight design MobileNetV2 backbone network and the attention mechanism called Spatial and Channel Attention Module (SCAM) for improving the feature extraction as well as the feature representation and localization process of lung tumor cell. The proposed method integrated a MobileNetV2 backbone network due to its lightweight design for deriving valuable features of the input clinical images to reduce the complexity of the network architecture. Moreover, it also incorporates the attention module SCAM for the creation of spatially and channel wise informative features to enhance the lung tumor cell features representation and also its localization to concentrate on important locations. To assess the efficacy of the method, several high performance lung tumor cell classification techniques ECNN, Lung-Retina Net, CNN-SVM, CCDC-HNN, and MTL-MGAN, and datasets including Lung-PET-CT-Dx dataset, LIDC-IDRI dataset, and Chest CT-Scan images dataset are taken to carry out experimental evaluation. By conducting the comprehensive comparative analysis for different metrics with respect to different methods, the proposed method obtains the impressive performance rate with accuracy of 98.6%, specificity of 96.8%, sensitivity of 97.5%, and precision of 98.2%. Furthermore, the experimental outcomes also reveal that the proposed method reduces the complexity of the network and obtains improved diagnostic outcomes with available annotated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nisha Jenipher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenipher, V.N., Radhika, S. Lung tumor cell classification with lightweight mobileNetV2 and attention-based SCAM enhanced faster R-CNN. Evolving Systems (2024). https://doi.org/10.1007/s12530-023-09564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12530-023-09564-3

Keywords

Navigation