Skip to main content

Autonomous Data Density pruning fuzzy neural network for Optical Interconnection Network

Abstract

Traditionally, fuzzy neural networks have parametric clustering methods based on equally spaced membership functions to fuzzify inputs of the model. In this sense, it produces an excessive number calculations for the parameters’ definition of the network architecture, which may be a problem especially for real-time large-scale tasks. Therefore, this paper proposes a new model that uses a non-parametric technique for the fuzzification process. The proposed model uses an autonomous data density approach in a pruned fuzzy neural network, wich favours the compactness of the model. The performance of the proposed approach is evaluated through the usage of databases related to the Optical Interconnection Network. Finally, binary patterns classification tests for the identification of temporal distribution (asynchronous or client–server) were performed and compared with state-of-the-art fuzzy neural-based and traditional machine learning approaches. Results demonstrated that the proposed model is an efficient tool for these challenging classification tasks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Based on Abasikeles and Akay (2013).

  2. 2.

    Similarly, the technique used by Gao et al., instead of analyzing samples, analyzes the membership degreee values that make up the neurons of the first layer.

  3. 3.

    The database can be found in https://archive.ics.uci.edu/ml/datasets/Optical+Interconnection+Network+.

  4. 4.

    http://tec.citius.usc.es/stac/index.html.

References

  1. Abasikeles I, Akay MF (2013) Using message combining and priority for improving the performance of distributed shared memory multiprocessor systems. In: Proceedings book of the fourth international conference on, p 212

  2. Acı Çİ, Akay MF (2015) A hybrid congestion control algorithm for broadcast-based architectures with multiple input queues. J Supercomput 71(5):1907–1931

    Article  Google Scholar 

  3. Akay MF, Abasıkeleş I (2010) Predicting the performance measures of an optical distributed shared memory multiprocessor by using support vector regression. Expert Syst Appl 37(9):6293–6301

    Article  Google Scholar 

  4. Akay MF, Aci Çİ, Abut F (2015) Predicting the performance measures of a 2-dimensional message passing multiprocessor architecture by using machine learning methods. Neural Netw World 25(3):241–265

    Article  Google Scholar 

  5. Albert A (1972) Regression and the Moore–Penrose pseudoinverse. Elsevier, Oxford

    MATH  Google Scholar 

  6. Angelov PP, Gu X, Gutierrez G, Iglesias JA, Sanchis A (2016) Autonomous data density based clustering method. In: The bi-annual IEEE world congress on computational intelligence (IEEE WCCI), pp 2405–2413

  7. Angelov P, Yager R (2012) A new type of simplified fuzzy rule-based system. Int J Gen Syst 41(2):163–185

    MathSciNet  MATH  Article  Google Scholar 

  8. Angelov P, Yager R (2011) Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density. In: 2011 IEEE workshop on evolving and adaptive intelligent systems (EAIS). IEEE, pp 62–69

  9. Baruah RD, Angelov P (2014) Dec: dynamically evolving clustering and its application to structure identification of evolving fuzzy models. IEEE Trans Cybern 44(9):1619–1631. https://doi.org/10.1109/TCYB.2013.2291234

    Article  Google Scholar 

  10. Batista LO, de Silva GA, Araújo VS, Araújo VJS, Rezende TS, Junio A, Guimarães PVDCS (2018) Fuzzy neural networks to create an expert system for detecting attacks by SQL injection. Int J Forensic Comput Sci 13(1):8–21

    Article  Google Scholar 

  11. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  12. Bordignon F, Gomide F (2014) Uninorm based evolving neural networks and approximation capabilities. Neurocomputing 127:13–20

    Article  Google Scholar 

  13. Bordignon F, Gomide F (2012) Extreme learning for evolving hybrid neural networks. In: Neural networks (SBRN), 2012 Brazilian symposium on. IEEE, pp 196–201

  14. Cavalieri S, Di Stefano A, Mirabella O, Reitano G (1991) On the design of a multiprocessor architecture for neural network simulation. In: 1991., IEEE international symposium on circuits and systems. IEEE, pp 2538–2541

  15. Chatterjee A, Pulasinghe K, Watanabe K, Izumi K (2005) A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans Ind Electron 52(6):1478–1489

    Article  Google Scholar 

  16. Chen YW, Lin CJ (2006) Combining SVMS with various feature selection strategies. Feature extraction. Springer, Berlin, pp 315–324

    Chapter  Google Scholar 

  17. de Campos Souza PV (2018) Pruning fuzzy neural networks based on unineuron for problems of classification of patterns. J Intell Fuzzy Syst 35(2):2597–2605

    Article  Google Scholar 

  18. de Campos Souza PV, Guimaraes AJ, Araújo VS, Rezende TS, Araújo VJS (2018) Fuzzy neural networks based on fuzzy logic neurons regularized by resampling techniques and regularization theory for regression problems. Intel Artif 21(62):114–133

    Article  Google Scholar 

  19. de Campos Souza PV, Guimaraes AJ, Araujo VS, Rezende TS, Araujo VJS (2019) Incremental regularized data density-based clustering neural networks to aid in the construction of effort forecasting systems in software development. Appl Intell 20:1–14

    Google Scholar 

  20. de Campos Souza PV, Nunes CFG, Guimares AJ, Rezende TS, Araujo VS, Arajuo VJS (2019) Self-organized direction aware for regularized fuzzy neural networks. Evolv Syst 20:1–15

    Google Scholar 

  21. de Campos Souza PV, Torres LCB, Guimarães AJ, Araujo VS (2019) Pulsar detection for wavelets soda and regularized fuzzy neural networks based on andneuron and robust activation function. Int J Artif Intell Tools 28(01):1950,003

    Article  Google Scholar 

  22. de Campos Souza PV, Araujo VS, Guimaraes AJ, Araujo VJS, Rezende TS (2018) Method of pruning the hidden layer of the extreme learning machine based on correlation coefficient. In: 2018 IEEE Latin American conference on computational intelligence (LA-CCI), pp 1–6. https://doi.org/10.1109/LA-CCI.2018.8625247

  23. de Campos Souza PV, de Oliveira PFA (2018) Regularized fuzzy neural networks based on nullneurons for problems of classification of patterns. In: 2018 IEEE symposium on computer applications and industrial electronics (ISCAIE). IEEE, pp 25–30

  24. de Campos Souza PV, Guimaraes AJ (2018) Using fuzzy neural networks for improving the prediction of children with autism through mobile devices. In: 2018 IEEE symposium on computers and communications (ISCC). IEEE, pp 01086–01089

  25. de Campos Souza PV, Silva GRL, Torres LCB (2018) Uninorm based regularized fuzzy neural networks. In: 2018 IEEE conference on evolving and adaptive intelligent systems (EAIS). IEEE, pp 1–8

  26. de Campos Souza PV, Torres LCB (2018) Regularized fuzzy neural network based on or neuron for time series forecasting. In: North American fuzzy information processing society annual conference. Springer, pp 13–23

  27. Elhadef M (2011) A modified hopfield neural network for diagnosing comparison-based multiprocessor systems using partial syndromes. In: 2011 IEEE 17th international conference on parallel and distributed systems. IEEE, pp 646–653

  28. Gao J, Wang Z, Yang Y, Zhang W, Tao C, Guan J, Rao N (2013) A novel approach for lie detection based on f-score and extreme learning machine. PLoS One 8(6):e64,704

    Article  Google Scholar 

  29. Giles CL, Goudreau MW (1995) Routing in optical multistage interconnection networks: a neural network solution. J Lightw Technol 13(6):1111–1115

    Article  Google Scholar 

  30. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    MathSciNet  MATH  Article  Google Scholar 

  31. Gu X, Angelov PP, Príncipe JC (2018) A method for autonomous data partitioning. Inf Sci 20:20

    Google Scholar 

  32. Gu X, Angelov PP, Gutierrez G, Iglesias JA, Sanchis A (2016) Parallel computing teda for high frequency streaming data clustering. In: INNS conference on big data. Springer, pp 238–253

  33. Gu X, Angelov PP (2016) Autonomous data-driven clustering for live data stream. In: Systems, man, and cybernetics (SMC), 2016 IEEE international conference on. IEEE, pp 001128–001135

  34. Guimaraes AJ, Arajo VJ, de Oliveira Batista L, Souza PVC, Araujo V, Rezende TS (2018b) Using fuzzy neural networks to improve prediction of expert systems for detection of breast cancer. Anais Encontro Nacl Intel Artif Comput (ENIAC), pp 799–810. https://doi.org/10.5753/eniac.2018.4468. http://portaldeconteudo.sbc.org.br/index.php/eniac/article/view/4468

  35. Guimarães AJ, Araujo VJS, de Campos Souza PV, Araujo VS, Rezende TS (2018a) Using fuzzy neural networks to the prediction of improvement in expert systems for treatment of immunotherapy. In: Ibero-American conference on artificial intelligence. Springer, pp 229–240

  36. Halim Z, Khattak JH (2018) Density-based clustering of big probabilistic graphs. Evol Syst 20L:1–18

    Google Scholar 

  37. Hassan T, Bajwa IS, Hassan S (2016) Prediction of terrorist activities by using unsupervised learning techniques. J Appl Emerg Sci 6(2):56–60

    Google Scholar 

  38. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  39. Iglesias JA, Sanchis A (2016) Parallel computing teda for high frequency streaming data clustering. In: Advances in big data: proceedings of the 2nd INNS conference on big data, October 23–25, 2016, Thessaloniki, Greece, vol 529. Springer, p 238

  40. Jang JS (1993) Anfis: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  41. Johnson KM, Surette MR, Shamir J (1988) Optical interconnection network using polarization-based ferroelectric liquid crystal gates. Appl Opt 27(9):1727–1733

    Article  Google Scholar 

  42. Junio Guimares A, Vitor de Campos Souza P, Jonathan Silva Arajo V, Silva Rezende T, Souza Arajo V (2019) Pruning fuzzy neural network applied to the construction of expert systems to aid in the diagnosis of the treatment of cryotherapy and immunotherapy. Big Data Cogn Comput 3(2). https://doi.org/10.3390/bdcc3020022. https://www.mdpi.com/2504-2289/3/2/22

  43. Kangin D, Angelov P, Iglesias JA (2016) Autonomously evolving classifier tedaclass. Inf Sci 366:1–11. https://doi.org/10.1016/j.ins.2016.05.012. http://www.sciencedirect.com/science/article/pii/S002002551630336X

  44. Katsinis C (2004) Merging, sorting and matrix operations on the some-bus multiprocessor architecture. Future Gener Comput Syst 20(4):643–661

    Article  Google Scholar 

  45. Kim W, Oh S, Seo K, Pedrycz W (2013) A design of fcm-based interval type-2 fuzzy neural network classifier with the aid of PSO. In: 2013 Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), pp 1209–1214. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608573

  46. Kotilainen P, Saarinen J, Kaski K (1993) Neural network computation in a parallel multiprocessor architecture. In: Proceedings of 1993 international conference on neural networks (IJCNN-93-Nagoya, Japan), vol 2. IEEE, pp 1979–1982

  47. Lemos AP, Caminhas W, Gomide F (2012) A fast learning algorithm for uninorm-based fuzzy neural networks. In: Fuzzy information processing society (NAFIPS), 2012 annual meeting of the North American. IEEE, pp 1–6

  48. Lemos A, Caminhas W, Gomide F (2010) New uninorm-based neuron model and fuzzy neural networks. In: Fuzzy information processing society (NAFIPS), 2010 annual meeting of the North American. IEEE, pp 1–6

  49. Lemos A, Kreinovich V, Caminhas W, Gomide F (2011) Universal approximation with uninorm-based fuzzy neural networks. In: Fuzzy information processing society (NAFIPS), 2011 annual meeting of the North American. IEEE, pp 1–6

  50. Louri A, Sung H (1994) An optical multi-mesh hypercube: a scalable optical interconnection network for massively parallel computing. J Lightw Technol 12(4):704–716

    Article  Google Scholar 

  51. Lu CH, Tsai CC (2007) Generalized predictive control using recurrent fuzzy neural networks for industrial processes. J Process Control 17(1):83–92

    Article  Google Scholar 

  52. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    MathSciNet  MATH  Article  Google Scholar 

  53. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) Op-elm: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162

    Article  Google Scholar 

  54. Mohamad M, Saman MYM, Hitam MS (2012) A framework for multiprocessor neural networks systems. In: 2012 international conference on ICT convergence (ICTC). IEEE, pp 44–48

  55. Na JW (2004) A parallel optical computer architecture for large database and knowledge based systems. In: International conference on computational and information science. Springer, pp 934–939

  56. Pedrycz W (1993) Fuzzy control and fuzzy systems, 2nd edn. Research Studies Press Ltd., Baldock

    MATH  Google Scholar 

  57. Pedrycz W, Gomide F (1998) An introduction to fuzzy sets: analysis and design. MIT Press, London

    MATH  Book  Google Scholar 

  58. Pinto D, Lemos AP, Braga AP, Horizonte B, Gerais-Brazil M (2015) An affinity matrix approach for structure selection of extreme learning machines. In: Proceedings. Presses universitaires de Louvain, p 343

  59. Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig MO (2007) Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers. In: European conference on parallel processing. Springer, pp 672–681

  60. Rast M (1998) Improving fuzzy neural networks using input parameter training. In: 1998 conference of the North American fuzzy information processing society—NAFIPS (Cat. No.98TH8353), pp 55–58. https://doi.org/10.1109/NAFIPS.1998.715529

  61. Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) Stac: a web platform for the comparison of algorithms using statistical tests. In: 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–8

  62. Rong HJ, Ong YS, Tan AH, Zhu Z (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72(1–3):359–366

    Article  Google Scholar 

  63. Ross TJ (2000) Membership functions, fuzzification and defuzzification. Fuzzy systems in medicine. Springer, Berlin, pp 48–77

    Chapter  Google Scholar 

  64. Sampsell JB, McDonald TG (1989) Optical fiber interconnection network including spatial light modulator. US Patent 4856863

  65. Saw JG, Yang MC, Mo TC (1984) Chebyshev inequality with estimated mean and variance. Am Stat 38(2):130–132

    MathSciNet  Google Scholar 

  66. Similä T, Tikka J (2005) Multiresponse sparse regression with application to multidimensional scaling. In: International conference on artificial neural networks. Springer, pp 97–102

  67. Škrjanc I, Blažič S, Lughofer E, Dovžan D (2019) Inner matrix norms in evolving cauchy possibilistic clustering for classification and regression from data streams. Inf Sci 478:540–563

    Article  Google Scholar 

  68. Souza PVdC, Guimaraes AJ, Araujo VS, Rezende TS, Araujo VJS (2018) Regularized fuzzy neural networks to aid effort forecasting in the construction and software development. Int J Artif Intell Appl

  69. Souza PVC, dos Reis AG, Marques GRR, Guimaraes AJ, Araujo VJS, Araujo VS, Rezende TS, Batista LO, da Silva GA (2019) Using hybrid systems in the construction of expert systems in the identification of cognitive and motor problems in children and young people. In: 2019 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–6. https://doi.org/10.1109/FUZZ-IEEE.2019.8858906

  70. Souza PVC (2018) Regularized fuzzy neural networks for pattern classification problems. Int J Appl Eng Res 13(5):2985–2991

    Google Scholar 

  71. Souza PVC, Guimaraes AJ, Araujo VS, Batista LO, Rezende TS (2020) An interpretable machine learning model for human fall detection systems using hybrid intelligent models. Springer International Publishing, Cham, pp 181–205. https://doi.org/10.1007/978-3-030-38748-8_8

    Book  Google Scholar 

  72. Toosi AN, Kahani M (2007) A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Comput Commun 30(10):2201–2212

    Article  Google Scholar 

  73. Wang Z, Zhao W, Hu X (2019) Analysis of prediction model of failure depth of mine floor based on fuzzy neural network. Geotech Geol Eng 37(1):71–76

    Article  Google Scholar 

  74. Weiss Y (1999) Segmentation using eigenvectors: a unifying view. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2. IEEE, pp 975–982

  75. Wilcoxon F (1992) Individual comparisons by ranking methods. Breakthroughs in statistics. Springer, Berlin, pp 196–202

    Chapter  Google Scholar 

  76. Yager RR, Rybalov A (1996) Uninorm aggregation operators. Fuzzy Sets Syst 80(1):111–120

    MathSciNet  MATH  Article  Google Scholar 

  77. Yamamoto J, Fujiwara T, Komeda T, Kamei T, Hanawa T, Amano H (1999) Performance evaluation of snail: a multiprocessor based on the simple serial synchronized multistage interconnection network architecture. Parallel Comput 25(9):1081–1103

    MATH  Article  Google Scholar 

  78. Zadeh LA (1976) A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. Systems theory in the social sciences. Springer, Berlin, pp 202–282

    Chapter  Google Scholar 

  79. Zayid EIM, Akay MF (2013) Predicting the performance measures of a message-passing multiprocessor architecture using artificial neural networks. Neural Comput Appl 23(7–8):2481–2491

    Article  Google Scholar 

Download references

Acknowledgements

The thanks of this work are destined to CEFET-MG and Faculdade UNA de Betim.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Vitor de Campos Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Campos Souza, P.V., Soares, E.A., Guimarães, A.J. et al. Autonomous Data Density pruning fuzzy neural network for Optical Interconnection Network. Evolving Systems 12, 899–911 (2021). https://doi.org/10.1007/s12530-020-09336-3

Download citation

Keywords

  • Fuzzy neural networks
  • Autonomous data density
  • Optical interconnection network