Skip to main content
Log in

Improving the PSO method for global optimization problems

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

The paper introduces two modifications for the well-known PSO method to solve global optimization problems. The first modification deals with the termination of the method and the second with the bounding of the so-called velocity in order to prevent the method from creating particles outside the domain range of the objective function. The modified method was tested on a series of global optimization problems from the relevant literature and the results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optimiz 31:635–672

    Article  MathSciNet  Google Scholar 

  • Angelov P (1994) A generalized approach to fuzzy optimization. Int J Intell Syst 1994:261–268

    Article  Google Scholar 

  • Araujo E, Coelho LS (2008) Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system, Appl Soft Comput 8:1354–1364

    Article  Google Scholar 

  • Barhen J, Protopopescu V, Reister D (1997) TRUST: a deterministic algorithm for global optimization. Science 16:1094–1097

    Article  MathSciNet  Google Scholar 

  • de Moura Meneses AA, Machado MD, Schirru R (2009) Particle swarm optimization applied to the nuclear reload problem of a pressurized water reactor. Progr Nuclear Energy 51:319–326

    Article  Google Scholar 

  • Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resourc Res 28:1015–1031

    Article  Google Scholar 

  • Gaing Z-L (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18:1187–1195

    Article  Google Scholar 

  • Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305

    MathSciNet  MATH  Google Scholar 

  • Gaviano M, Ksasov DE, Lera D, Sergeyev YD (2003) Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans Math Softw 29:469–480

    Article  MathSciNet  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley Publishing Company, Reading

    MATH  Google Scholar 

  • Hosseini SA, Hajipour A, Tavakoli H (2019) Design and optimization of a CMOS power amplifier using innovative fractional-order particle swarm optimization. Appl Soft Comput 85:105831

    Article  Google Scholar 

  • Isiet M, Gadala M (2019) Self-adapting control parameters in particle swarm optimization. Appl Soft Comput 83:105653

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1999) The particle swarm: social adaptation in information processing systems. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, Cambridge, pp 11–32

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  • Lennard-Jones JE (1924) On the determination of molecular fields. Proc R Soc Lond A 106:463–477

    Article  Google Scholar 

  • Lin Y, Stadtherr MA (2004) Advances in interval methods for deterministic global optimization in chemical engineering. J Glob Optimiz 29:281–296

    Article  MathSciNet  Google Scholar 

  • Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25:1261–1271

    Article  Google Scholar 

  • Mariani VC, Duck ARK, Guerra FA (2012) Leandro dos Santos Coelho, R.V. Rao, Heat exchanger design, Shell and tube heat exchanger (STHE), Economic optimization, Particle swarm optimization, Quantum particle swarm optimization, Chaos theory. Appl Therm Eng 42:119–128

    Article  Google Scholar 

  • Marinakis Y (2008) Magdalene Marinaki, Georgios Dounias, particle swarm optimization for pap-smear diagnosis. Expert Syst Appl 35:1645–1656

    Article  Google Scholar 

  • Michaelewizc Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    Google Scholar 

  • Pardalos PM, Shalloway D, Xue G (1994) Optimization methods for computing global minima of nonconvex potential energy functions. J Glob Optimiz 4:117–133

    Article  MathSciNet  Google Scholar 

  • Park J-B, Jeong Y-W, Shin J-R, Lee KY (2010) An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans Power Syst 25:156–166

    Article  Google Scholar 

  • Powell MJD (1989) A tolerant algorithm for linearly constrained optimization calculations. Math Program 45:547–566

    Article  MathSciNet  Google Scholar 

  • Price WL (1977) Global optimization by controlled random search. Comput J 20:367–370

    Article  Google Scholar 

  • Shahzad F, Baig AR, Masood S, Kamran M, Naveed N (2009) Opposition-based particle swarm optimization with velocity clamping (OVCPSO). In: Yu W, Sanchez EN (eds) Advances in computational intelligence. Advances in intelligent and soft computing, vol 116. Springer, Berlin, Heidelberg

  • Shaw R, Srivastava S (2007) Particle swarm optimization: a new tool to invert geophysical data. Geophysics 2007:72

    Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter Selection in particle swarm optimization. In: Evolutionary Programming VII. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, pp 591-600

  • Shi XH, Liang YC, Lee HP, Lu C, Wang LM (2005) An improved GA and a novel PSO-GA based hybrid algorithm. Inf Process Lett 93:255–261

    Article  MathSciNet  Google Scholar 

  • Sun J, Xu W, Fang W, Algorithm Quantum-Behaved Particle Swarm Optimization, with Controlled Diversity. In: Alexandrov VN, van Albada GD, Sloot PMA, Dongarra J (eds) Computational science–ICCS 2006. ICCS, (2006) Lecture Notes in Computer Science, vol 3993. Springer, Berlin, Heidelberg, p 2006

  • Tang R-L, Fang Y-J (2015) Modification of particle swarm optimization with human simulated property. Neurocomputing 153:319–331

    Article  Google Scholar 

  • Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl Math Comput 203:598–607

    MathSciNet  MATH  Google Scholar 

  • Wachowiak MP, Smolikova R, Yufeng Z, Zurada JM, Elmaghraby AS (2004) An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans Evol Comput 8:289–301

    Article  Google Scholar 

  • Wales DJ, Scheraga HA (1999) Global optimization of clusters, crystals, and biomolecules. Science 27:1368–1372

    Article  Google Scholar 

  • Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204:83–97

    Article  Google Scholar 

  • Yasuda K, Iwasaki N (2004) Adaptive particle swarm optimization using velocity information of swarm. In: 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No.04CH37583), The Hague, pp 3475-3481, vol 4

Download references

Funding

This work is partly funded by the project entitled HuMORIST-Hospital MOnitoRIng SysTem, co-financed by the European Union and Greek national funds through the Operational Program for Research and Innovation Smart Specialization Strategy (RIS3) of Ipeiros (Project Code: ΗΠ1ΑΒ-00260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis G. Tsoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoulos, I.G., Tzallas, A. & Karvounis, E. Improving the PSO method for global optimization problems. Evolving Systems 12, 875–883 (2021). https://doi.org/10.1007/s12530-020-09330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-020-09330-9

Keywords

Navigation