Skip to main content

Advertisement

Log in

MONDE: a method for predicting social network dynamics and evolution

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

This paper proposes a method for predicting dynamics and evolution of social networks (MONDE). The dynamics and the evolution are related to relationships and potentials for collaboration and knowledge sharing among members of a social network according to their topics of interests. MONDE combines a multi-layer Hidden Markov Model with a genetic algorithm for modeling and predicting behaviors of social groups at macro (i.e. network), meso (i.e. group) and micro (i.e. individual) levels. The evolution is forecasted by analyzing users according to different features and their participation in the different groups of interest. This model was tested using data from two communities, i.e. the Sha.p.e.s. community and Twitter users lists. The obtained results underline a good prediction performance in both the short-term dynamics and long-term evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham A et al (1996) Evolutionary computation: from genetic algorithms to genetic programming. Stud Comput Intell (SCI) 13:120

    Google Scholar 

  • Banisch S, Lima R, Arajo T (2012) Agent based models and opinion dynamics as Markov chain. Soc Netw 34(4):549–561

    Article  Google Scholar 

  • Benesch T (2001) The Baum–Welch algorithm for parameter estimation of Gaussian autoregressive mixture models. J Math Sci 105:2515–2518

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd K, Eng KH, Page CD (2013) Area under the precision-recall curve: point estimates and confidence intervals. In: Machine learning and knowledge discovery in databases. Springer, Berlin, pp 451–466

    Google Scholar 

  • Brdka P, Kazienko P, Kooszczyk B (2012) Predicting group evolution in the social network. In: Social informatics. Springer, Berlin, pp 54–67

    Chapter  Google Scholar 

  • Bringmann B, Berlingerio M, Bonchi F, Gionis A (2010) Learning and predicting the evolution of social networks. Intell Syst IEEE 25(4):26–35

    Article  Google Scholar 

  • Carley KM (2003) Dynamic network analysis. Dynamic social network modeling and analysis: workshop summary and papers, pp 133–145

  • Caschera MC, Ferri F, Grifoni P (2008) SIM: a dynamic multidimensional visualization method for social networks. PsychNol J 6(3):291–320

    Google Scholar 

  • Caschera MC, D’Ulizia A, Ferri F, Grifoni P (2009a) Studying network dynamics in digital ecosystems. In: Proceedings of the international conference on management of emergent digital ecosystems (MEDES09), 27–30 October 2009, Lyon. ACM Digital Library

  • Caschera MC, Ferri F, Grifoni P, Guzzo T (2009b) Multidimensional visualization system for travel social networks. In: 6th international conference on information technology: new generations ITNG 2009. IEEE Computer Society, pp 1510–1516

  • Caschera MC, Ferri F, Grifoni P (2013) InteSe: an integrated model for resolving ambiguities in multimodal sentences. IEEE Trans Syst Man Cybern Part A Syst Hum 43(4):911–931

    Article  Google Scholar 

  • D’Andrea A, Ferri F, Grifoni P (2010) An overview of methods for virtual social networks analysis. Springer, London, pp 3–25

    Google Scholar 

  • Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning. ICML 06, New York. ACM, pp 233–240

  • Dong Z (2016) Dynamic community detection algorithm based on hidden Markov model. In: Proceedings of the 2016 international symposium on advances in electrical, electronics and computer engineering. advances in engineering research. ISBN 978-94-6252-181-0. https://doi.org/10.2991/isaeece-16.2016.55

  • Doreian P, Stokman FN (1997) Evolution of social networks. In: Doreian P, Stokman FN (eds), vol 1. Routledge, p 261

  • Dunlavy DM, Kolda TG, Acar E (2011) Temporal link prediction using matrix and tensor factorizations. ACM Trans Knowl Discov Data (TKDD) 5(2):10

    Google Scholar 

  • Fatima I, Fahim M, Lee YK, Lee S (2013) MODM: multi-objective diffusion model for dynamic social networks using evolutionary algorithm. J Supercomput 66(2):738–759

    Article  Google Scholar 

  • Ferri F, Grifoni P, Caschera MC, D’Ulizia A, Pratico` C (2013) KRC: KnowInG crowdsourcing platform supporting creativity and innovation. AISS Adv Inf Sci Serv Sci 5(16):1–15

    Google Scholar 

  • Ferri F, Grifoni P, Caschera MC, D‘Andrea A, D‘Ulizia A, Guzzo T (2014) An ecosystemic environment for knowledge and services sharing on creative enterprises. In: Proceedings of the 6th international conference on management of emergent digital ecosystems. ACM, pp. 27–33

  • Folino F, Pizzuti CA (2010) Multiobjective and evolutionary clustering method for dynamic networks. In Proc. int. conf. advances in social networks analysis and mining, pp 256–263

  • Gong MG, Zhang LJ, Ma JJ et al (2012) Community detection in dynamic social networks based on multiobjective immune algorithm. J Comput Sci Technol 27(3):455–467

    Article  MathSciNet  MATH  Google Scholar 

  • Grifoni P, Ferri F, D’Andrea A, Guzzo T, Pratico` C (2014) SoN-KInG: a digital eco-system for innovation in professional and business domains. J Syst Inf Technol 16(1):77–92

    Article  Google Scholar 

  • Huang S, Lee D (2011) Exploring structural features in predicting social network evolution. In: 10th international conference on machine learning and applications, vol 2. IEEE, pp 269–274

  • Juszczyszyn K, Musial K, Budka M (2011) Link prediction based on subgraph evolution in dynamic social networks. In: International conference on social computing, pp 27–34

  • Kairam SR, Wang DJ, Leskovec J (2012) The life and death of online groups: Predicting group growth and longevity. In: Proceedings of the fifth ACM international conference on Web search and data mining. ACM, pp 673–682

  • Kim K, McKay R, Moon BR (2010) Multiobjective evolutionary algorithms for dynamic social network clustering. In: Proc. the 12th conf. genetic and evolutionary computation, pp 1179–1186

  • Lahiri M, Cebrian M (2010) The genetic algorithm as a general diffusion model for social networks. In: Proceedings of the 24th AAAI conference on artificial intelligence, pp 494–499

  • Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 462–470

  • Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci 58:1019–1031

    Article  Google Scholar 

  • Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data (TKDD) 3(2):8

    Google Scholar 

  • Lymperopoulos IN, Ioannou GD (2016) Understanding and modeling the complex dynamics of the online social networks: a scalable conceptual approach. Evol Syst 7(3):207–232

    Article  Google Scholar 

  • Makhoul J, Kubala F, Schwartz R, Weischedel R (1999) Performance measures for information extraction. In: Proceedings of DARPA broadcast news workshop, Herndon, pp 249–252

  • Martinez ND (2005) Network evolution: exploring the change and adaptation of complex ecological systems over deep time. In: Pascual M, Dunne JA (eds) Structure (Hutchinson 1965). Oxford University Press, Oxford, pp 287–302

    Google Scholar 

  • Michalski R, Palus S, Brdka P, Kazienko P, Juszczyszyn K (2011) Modelling social network evolution. In: Datta A, Shulman S, Zheng B, Lin SD, Sun A, Lim EP (eds) SocInfo 2011, LNCS, vol 6984. Springer, Heidelberg, pp 283–286

    Google Scholar 

  • Michalski R, Kazienko P, Krl D (2012) Predicting social network measures using machine learning approach. In: Proceedings of the 2012 international conference on advances in social networks analysis and mining. IEEE Computer Society, pp. 1056–1059

  • Negre E, Missaoui R, Vaillancourt J (2011) Predicting a social network structure once a node is deleted. In: International conference on advances in social networks analysis and mining, IEEE. pp. 297–304

  • Oyama A (2000) Wing design using evolutionary algorithms. Ph.D. thesis, Department of Aeronautics and Space Engineering, Tohoku University, Sendai

  • Patil A, Liu J, Gao J (2013) Predicting group stability in online social networks. In: Proceedings of the 22nd international conference on World Wide Web (WWW13), Rio de Janeiro, 13–17 May 2013, pp. 1021–1030

  • Pavlopoulou MEG, Tzortzis G, Vogiatzis D, Paliouras G (2017). Predicting the evolution of communities in social networks using structural and temporal features. In: Semantic and social media adaptation and personalization (SMAP), 2017 12th International Workshop, IEEE, pp 40–45

  • Rabiner LR (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Saganowski S, Bródka P, Kazienko P (2017) Community evolution. Encyclopedia of social network analysis and mining. Springer, New York, pp 1–14, https://doi.org/10.1007/978-1-4614-7163-9_223-1

    Book  Google Scholar 

  • Sharmeen F, Arentze T, Timmermans H (2015) Predicting the evolution of social networks with life cycle events. Transportation 42(5):733–751

    Article  Google Scholar 

  • Siebecker D (2003) A hidden Markov model for describing the statistical evolution of social groups over communication networks. Rensselaer Polytechnic Institute Troy, New York (Advisor: Malik Magdon-Ismail)

    Google Scholar 

  • Snijders TAB (1996) Stochastic actor-oriented models for network change. J Math Sociol 21:149–172

    Article  MATH  Google Scholar 

  • Snijders TAB (2001) The statistical evaluation of social network dynamics. In: Sobel ME, Becker MP (eds) Sociological methodology. Basil Blackwell, Boston, pp 361–395

    Google Scholar 

  • Snijders TAB (2011) Network dynamics. In: Scott John, Carrington Peter J. (eds) The SAGE handbook of social network analysis. Sage, London, pp 501–513

    Google Scholar 

  • Spiliopoulou M (2011) Evolution in social networks: a survey. In: Social network data analytics. Springer US, pp 149–175

  • Sugihara K (1997) Measures for performance evaluation of genetic algorithms. In: Joint conference on information science, JCIS 97, pp. 172–175

  • Takaffoli M, Rabbany R, Zaane OR (2014) Community evolution prediction in dynamic social networks. In: IEEE/ACM international conference on advances in social networks analysis and mining, IEEE, pp 9–16

  • Thayne C, Sherry M (2004) Dynamic classification of groups using social network analysis and hmms. In: Proc. IEEE Aerospace Conf., vol 5, issue 6–13, pp 3197–3205

  • Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269

    Article  MATH  Google Scholar 

  • Willer R, Willer D (2000) Exploring dynamic networks: hypotheses and conjectures. Soc Netw 22(3):251–272

    Article  Google Scholar 

  • Wu T, Chen L, Zhong L, Xian X (2017) Predicting the evolution of complex networks via similarity dynamics. Phys A 465:662–672

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Grifoni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caschera, M.C., D’Ulizia, A., Ferri, F. et al. MONDE: a method for predicting social network dynamics and evolution. Evolving Systems 10, 363–379 (2019). https://doi.org/10.1007/s12530-018-9242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-018-9242-z

Keywords

Navigation