Learning of operator hand movements via least angle regression to be teached in a manipulator

  • José de Jesús Rubio
  • Enrique Garcia
  • Gustavo Aquino
  • Carlos Aguilar-Ibañez
  • Jaime Pacheco
  • Alejandro Zacarias
Original Paper


In this document, a control system is developed to allow a manipulator to learn and plan references from demonstrations given by an operator hand. Data entry is acquired by a sensor and is learned by the generalized learning model with least angle regression to create a desired reference in three dimensional space. A fifth reference profile is employed to smooth the desired reference. Direct and inverse kinematics are gotten to represent the transformation between the three dimensional space and each of the manipulator links. A dynamic model is gotten using Newton–Euler formulation. An evolving proportional derivative (PD) control is applied to get that the manipulator end effector follows the operator hand movements. The monitoring and control systems are implemented in an embedded platform for testing purposes.


Manipulator Least angle regression Reference Kinematics Model Embedded platform 



Authors thank the Editor in Chief, and reviewers for their valuable comments which let to improve this result. They thank the Instituto Politécnico Nacional, the Consejo Nacional de Ciencia y Tecnología, and Secretaría de Investigación y Posgrado for their support.


  1. Abdallah ZS, Gaber MM, Srinivasan B, Krishnaswamy S (2016) AnyNovel: detection of novel concepts in evolving data streams an application for activity recognition. Evol Syst 7(2):73–93CrossRefGoogle Scholar
  2. Angelov P, Yager R (2012) A new type of simplified fuzzy rule-based system. Int J Gen Syst 41(2):163–185MathSciNetCrossRefzbMATHGoogle Scholar
  3. Angelov P, Skrjanc I, Blazic S (2015) A robust evolving cloud-based controller. In: Springer Handbook of Computational Intelligence, Springer, pp 1435–1449Google Scholar
  4. Angelov P, Sadeghi-Tehran P, Ramezani R (2011) An approach to automatic real-time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi-Sugeno fuzzy systems. Int J Intell Syst 26:189–205CrossRefzbMATHGoogle Scholar
  5. Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems—methodology and applications. Wiley, New YorkCrossRefGoogle Scholar
  6. Angelov P (2012) Autonomous learning systems: from data streams to knowledge in real-time. Wiley, New YorkCrossRefGoogle Scholar
  7. Calderon CA, Ramirez C, Barros V, Punin G (2017) Design and deployment of grasp control system applied to robotic hand prosthesis. IEEE Latin Am Trans 15(2):181–188CrossRefGoogle Scholar
  8. Fraley C, Hesterberg T (2009) Least angle regression and LASSO for large datasets. Stat Anal Data Min 1:251–259MathSciNetCrossRefGoogle Scholar
  9. Garcia MA, Gallardo J, Rodriguez R, Alcaraz LA (2017) A new four-degrees-of-freedom parallel manipulator. IEEE Latin Am Trans 15(5):928–934CrossRefGoogle Scholar
  10. Hernandez K, Bacca B, Posso B (2017) Multi-goal path planning autonomous system for picking up and delivery tasks in mobile robotics. IEEE Latin Am Trans 15(2):232–238CrossRefGoogle Scholar
  11. Iliadis L, Margaritis K, Maglogiannis I (2016) Timely advances in evolving neural-based systems special issue. Evol Syst 8(1):1–2CrossRefGoogle Scholar
  12. Kangin D, Angelov P, Iglesias JA (2016) Autonomously evolving classifier TEDAClass. Inf Sci 366:1–11MathSciNetCrossRefGoogle Scholar
  13. Kasabov N (2007) Evolving connectionist systems: the knowledge engineering approach, 2nd edn. Springer, LondonzbMATHGoogle Scholar
  14. Khamassi I, Sayed-Mouchaweh M, Hammami M, Ghedira K (2016) Discussion and review on evolving data streams and concept drift adapting. Evol Syst.
  15. Maciel L, Ballini R, Gomide F (2016) Evolving granular analytics for interval time series forecasting. Granul Comput 1:213–224CrossRefGoogle Scholar
  16. Marques Silva A, Caminhas W, Lemos A, Gomide F (2014) A fast learning algorithm for evolving neo-fuzzy neuron. Appl Soft Comput 14:194–209CrossRefGoogle Scholar
  17. Li X, Pan Y, Chen G, Yu H (2017) Multi-modal control scheme for rehabilitation robotic exoskeletons. Int J Robot Res 36(5):759–777CrossRefGoogle Scholar
  18. Liu Z, Liu J (2017) Adaptive iterative learning boundary control of a flexible manipulator with guarantted transient performance. Asian J Control 19(4):1–12MathSciNetGoogle Scholar
  19. Lughofer E (2013) On-line assurance of interpretability criteria in evolving fuzzy systems—achievements, new concepts and open issues. Inf Sci 251:22–46MathSciNetCrossRefGoogle Scholar
  20. Lughofer E, Cernuda C, Kindermann S, Pratama M (2015) Generalized smart evolving fuzzy systems. Evol Syst 6:269–292CrossRefGoogle Scholar
  21. Lughofer E (2016) Evolving fuzzy systems—fundamentals, reliability, interpretability and useability. In: Angelov P (ed) Handbook of computational intelligence. World Scientific, New York, pp 67–135Google Scholar
  22. Paramo Carranza LA, Meda Campaña JA, Rubio JJ, Tapia Herrera R, Curtidor Lopez AV, Grande Meza A, Cazares Ramirez I (2017) Discrete-time Kalman filter for Takagi–Sugeno fuzzy models. Evol Syst 8(3):211–219Google Scholar
  23. Peng Y, Liu J, He W (2017) Boundary control for a flexible inverted pendulum system based on a pde model. Asian J Control 19(2):1–10MathSciNetGoogle Scholar
  24. Pratama M, Lu J, Lughofer E, Zhang G, Anavatti S (2016) Scaffolding type-2 classifier for incremental learning under concept drifts. Neurocomputing 191:304–329CrossRefGoogle Scholar
  25. Pratama M, Lu J, Anavatti S, Lughofer E, Lim C-P (2016) An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171:89–105CrossRefGoogle Scholar
  26. Precup R-E, Tomescu ML, Radac M-B, Petriu EM, Preitl S, Dragos C-A (2012) Iterative performance improvement of fuzzy control systems for three tank systems. Expert Syst Appl 39:8288–8299CrossRefGoogle Scholar
  27. Precup R-E, Filip H-I, Radac M-B, Petriu EM, Preitl S, Dragos C-A (2014) Online identification of evolving Takagi-Sugeno-Kang fuzzy modelsfor crane systems. Appl Soft Comput 24:1155–1163CrossRefGoogle Scholar
  28. Rosado WMA, Valdes LGV, Ortega AB, Ascencio JR, Beltran CDG (2017) Passive rehabilitation exercises with an ankle rehabilitation prototype based in a robot parallel structure. IEEE Latin Am Trans 15(1):48–56CrossRefGoogle Scholar
  29. Rubio JJ, Cruz P, Paramo LA, Meda JA, Mujica D, Ortigoza RS (2016) PID anti-vibration control of a robotic arm. IEEE Latin Am Trans 14(7):3144–3150CrossRefGoogle Scholar
  30. Sa STL, Fernandes CC, Yanaguibashi EA, Barros RP, Burlamaqui AMF, Goncalves LMG (2017) Educaval: towards assessment of educational robotics softwares. IEEE Latin Am Trans 15(4):720–728CrossRefGoogle Scholar
  31. Sayed-Mouchaweh M, Lughofer E (2012) Learning in non-stationary environments: methods and applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  32. Serrano ME, Godoy SA, Romoli S, Scaglia GJE (2018) A numerical approximation-based controller for mobile robots with velocity limitation. Asian J Control 20(1):1–13MathSciNetCrossRefzbMATHGoogle Scholar
  33. Venkatesan R, Er MJ, Dave M, Pratama M, Wu S (2016) A novel online multi-label classifier for high-speed streaming data applications. Evol Syst 8(4):303–315CrossRefGoogle Scholar
  34. Zhang C, Sun T, Pan Y (2014) Neural network observer-based finite-time formation control of mobile robots. Math Probl Eng 2014:1–9MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José de Jesús Rubio
    • 1
  • Enrique Garcia
    • 1
  • Gustavo Aquino
    • 1
  • Carlos Aguilar-Ibañez
    • 2
  • Jaime Pacheco
    • 1
  • Alejandro Zacarias
    • 1
  1. 1.Sección de Estudios de Posgrado e Investigación, Esime AzcapotzalcoInstituto Politécnico NacionalMexico D.F.Mexico
  2. 2.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexico D.F.Mexico

Personalised recommendations