Abstract
Purpose
This study contributes to emerging literature on online health networks by modeling communication patterns between members of a moderated online support group for problem drinking. Using social network analysis, we described members’ patterns of joint participation in threads, parsing out the role of site moderators, and explored differences in member characteristics by network position.
Methods
Posts made to the online support group of Alcohol Help Centre during 2013 were structured as a two-mode network of members (n = 205) connected via threads (n = 506). Metrics included degree centrality, clique membership, and tie strength.
Results
The network consisted of one component and no cliques of members, although most made few posts and a small number communicated only with the site’s moderators. Highly active members were older and tended to have started posting prior to 2013. The distribution of members across threads varied from threads containing posts by one member to others that connected multiple members. Moderators accounted for sizable proportions of the connectivity between both members and threads.
Conclusions
After 5 years of operation, the AHC online support group appears to be fairly cohesive and stable, in the sense that there were no isolated subnetworks comprised of specific types of members or devoted to specific topics. Participation and connectedness at the member-level was varied, however, and tended to be low on average. The moderators were among the most central in the network, although there were also members who emerged as central and dedicated contributors to the online discussions across topics. Study findings highlight a number of areas for consideration by online support group developers and managers.
Similar content being viewed by others
References
Moos RH. Theory-based processes that promote the remission of substance use disorders. Clin Psychol Rev. 2007;27(5):537–51. doi:10.1016/j.cpr.2006.12.006.
van Mierlo T. The 1 % rule in four digital health social networks: an observational study. J Med Internet Res. 2014;16(2):e33. doi:10.2196/jmir.2966.
Carron-Arthur B, Cunningham JA, Griffiths KM. Describing the distribution of engagement in an internet support group by post frequency: a comparison of the 90-9-1 principle and Zipf’s law. Internet Interv. 2014;1:165–8.
Healey B, Hoek J, Edwards R. Posting behaviour patterns in an online smoking cessation social network: implications for intervention design and development. PLoS One. 2014;9(9):e106603. doi:10.1371/journal.pone.0106603.
van Mierlo T, Hyatt D, Ching AT. Mapping power law distributions in digital health social networks: methods, interpretations, and practical implications. J Med Internet Res. 2015;17(6):e160. doi:10.2196/jmir.4297.
Carron-Arthur B, Ali K, Cunningham JA, Griffiths KM. Quantifiable participation styles in online health communities—from “Help-seekers” to “Influential Users”: a systematic review. 2016.
Cobb NK, Graham AL, Abrams DB. Social network structure of a large online community for smoking cessation. Am J Public Health. 2010;100(7):1282–9. doi:10.2105/AJPH.2009.165449.
Chomutare T, Arsand E, Fernandez-Luque L, Lauritzen J, Hartvigsen G. Inferring community structure in healthcare forums. An empirical study. Methods Inf Med. 2013;52(2):160–7. doi:10.3414/ME12-02-0003.
Durant KT, McCray AT, Safran C. Social network analysis of an online melanoma discussion group. AMIA Jt Summits Transl Sci Proc. 2010;2010:6–10.
Myneni S, Cobb NK, Cohen T. Finding meaning in social media: content-based social network analysis of QuitNet to identify new opportunities for health promotion. Stud Health Technol Inform. 2013;192:807–11.
Luke DA, Harris JK. Network analysis in public health: history, methods, and applications. Annu Rev Public Health. 2007;28:69–93. doi:10.1146/annurev.publhealth.28.021406.144132.
Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social sciences. Science. 2009;323(5916):892–5. doi:10.1126/science.1165821.
Gruzd A, Haythornthwaite C. Enabling community through social media. J Med Internet Res. 2013;15(10):e248. doi:10.2196/jmir.2796.
Cunningham JA, van Mierlo T, Fournier R. An online support group for problem drinkers: AlcoholHelpCenter.Net. Patient Educ Couns. 2008;70(2):193–8. doi:10.1016/j.pec.2007.10.003.
Cunningham JA, Wild TC, Cordingley J, van Mierlo T, Humphreys K. A randomized controlled trial of an internet-based intervention for alcohol abusers. Addiction. 2009;104(12):2023–32. doi:10.1111/j.1360-0443.2009.02726.x.
Cunningham JA, Wild TC, Cordingley J, Van Mierlo T, Humphreys K. Twelve-month follow-up results from a randomized controlled trial of a brief personalized feedback intervention for problem drinkers. Alcohol Alcohol. 2010;45(3):258–62. doi:10.1093/alcalc/agq009.
Cunningham JA. Comparison of two internet-based interventions for problem drinkers: randomized controlled trial. J Med Internet Res. 2012;14(4):e107. doi:10.2196/jmir.2090.
de Nooy W, A M, V B. Exploratory social network analysis with Pajek. 2nd Ed. ed. New York: Cambridge University Press; 2011.
Hanneman RA, Riddle M. Introduction to social network methods. Riverside, CA: University of California, Riverside ( published in digital form at http://faculty.ucr.edu/∼hanneman/ )2005.
Bennett GG, Glasgow RE. The delivery of public health interventions via the internet: actualizing their potential. Annu Rev Public Health. 2009;30:273–92. doi:10.1146/annurev.publhealth.031308.100235.
Funk KL, Stevens VJ, Appel LJ, et al. Associations of internet website use with weight change in a long-term weight loss maintenance program. J Med Internet Res. 2010;12(3):e29. doi:10.2196/jmir.1504.
Kerr C, Murray E, Noble L, et al. The potential of web-based interventions for heart disease self-management: a mixed methods investigation. J Med Internet Res. 2010;12(4):e56. doi:10.2196/jmir.1438.
Robroek SJ, Brouwer W, Lindeboom D, Oenema A, Burdorf A. Demographic, behavioral, and psychosocial correlates of using the website component of a worksite physical activity and healthy nutrition promotion program: a longitudinal study. J Med Internet Res. 2010;12(3):e44. doi:10.2196/jmir.1402.
Brouwer W, Oenema A, Raat H, et al. Characteristics of visitors and revisitors to an internet-delivered computer-tailored lifestyle intervention implemented for use by the general public. Health Educ Res. 2010;25(4):585–95. doi:10.1093/her/cyp063.
Young C. Community management that works: how to build and sustain a thriving online health community. J Med Internet Res. 2013;15(6):e119. doi:10.2196/jmir.2501.
Lindsay S, Smith S, Bellaby P, Baker R. The health impact of an online heart disease support group: a comparison of moderated versus unmoderated support. Health Educ Res. 2009;24(4):646–54. doi:10.1093/her/cyp001.
Campbell AN, Nunes EV, Matthews AG, et al. Internet-delivered treatment for substance abuse: a multisite randomized controlled trial. Am J Psychiatry. 2014;171(6):683–90. doi:10.1176/appi.ajp.2014.13081055.
Chung JE. Social networking in online support groups for health: how online social networking benefits patients. J Health Commun. 2014;19(6):639–59. doi:10.1080/10810730.2012.757396.
Welbourne JL, Blanchard AL, Wadsworth MB. Motivations in virtual health communities and their relationship to community, connectedness and stress. Comput Hum Behav. 2013;29(1):129–39. doi:10.1016/j.chb.2012.07.024.
Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74(1):47.
Cobb NK, Graham AL, Byron MJ, Niaura RS, Abrams DB, Workshop P. Online social networks and smoking cessation: a scientific research agenda. J Med Internet Res. 2011;13(4):e119. doi:10.2196/jmir.1911.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This study did not receive dedicated funding. KU is supported by a Canada Research Chair in Substance Use, Addictions and Health Services Research from the Canadian Institutes for Health Research.
Conflict of Interest
TvM is the CEO and Founder of Evolution Health Systems Inc., the owner of Alcohol Help Center as well as other eHealth and mHealth platforms. KU and JC declare that they have no conflict of interest.
Ethical Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed Consent
Subjects consented to their data being used for research purposes by endorsing a checkbox in the online platform.
Rights and permissions
About this article
Cite this article
Urbanoski, K., van Mierlo, T. & Cunningham, J. Investigating Patterns of Participation in an Online Support Group for Problem Drinking: a Social Network Analysis. Int.J. Behav. Med. 24, 703–712 (2017). https://doi.org/10.1007/s12529-016-9591-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12529-016-9591-6