Skip to main content
Log in

Socioeconomic Status, Waist-to-Hip Ratio, and Short-Term Heart Rate Variability in Cambodians with Type 2 Diabetes

  • Published:
International Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

Background

Diabetes, adiposity, and socioeconomic status (SES) are all associated with decreased heart rate variability (HRV), a marker of autonomic function predictive of mortality. Cambodians have high rates of diabetes and low SES. How these factors interact to explain HRV has not been examined.

Purpose

The aims of this study were to investigate associations among waist-to-hip ratio, socioeconomic status, and HRV among Cambodians with diabetes.

Method

Sixty patients with type 2 diabetes for ≥1 year, not taking insulin, aged 35–80 years were recruited from the Cambodian Diabetes Association. The 2010 Ministry of Health survey regarding household conditions was used to measure SES. Waist-to-hip ratio was measured two times and averaged. For HRV, beat-to-beat intervals were recorded on ambulatory ECG recorders, and short-term HRV was calculated in the time domain and in the frequency domain using spectral analysis. Cross-sectional data were analyzed using a series of multiple linear regressions using SPSS v21.

Results

Participants were of mean age of 56 years old, 60 % female, with National Glycohemoglobin Standardization Program (NGSP) HbA1c mean = 8.4. Participants were poor (e.g., 18 % did not have flush toilets), had high waist-to-hip ratios (mean = 0.91), and had HRV values below published norms. In linear regression, there was a significant interaction between waist-to-hip ratio and SES explaining HRV in the time domain (standard deviation of the R-R interval (SDNN), beta = .33, t = 2.61, p < .05) and the frequency domain (log transformed very low frequency (Ln VLF), LF, and total power; all p < .05). Among those with lower SES only, higher waist-to-hip ratio was associated with lower HRV. Findings remained significant after controlling for age, sex, and HbA1c.

Conclusion

Central adiposity shows a stronger deleterious association with autonomic tone among individuals with more adverse social conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.

    Article  CAS  PubMed  Google Scholar 

  2. King H, Keuky L, Seng S, Khun T, Roglic G, Pinget M. Diabetes and associated disorders in Cambodia: two epidemiological surveys. Lancet. 2005;366:1633–9.

    Article  PubMed  Google Scholar 

  3. Aekplakorn W, Stolk RP, Neal B, Suriyawongpaisal P, Chongsuvivatwong V, Cheepudomwit S, et al. The prevalence and management of diabetes in Thai adults: the international collaborative study of cardiovascular disease in Asia. Diabetes Care. 2003;26:2758–63.

    Article  PubMed  Google Scholar 

  4. Duc Son LN, Kusama K, Hung NT, Loan TT, Chuyen NV, Kunii D, et al. Prevalence and risk factors for diabetes in Ho Chi Minh City. Vietnam Diabet Med. 2004;21:371–6.

    Article  CAS  PubMed  Google Scholar 

  5. Jia WP, Pang C, Chen L, Bao YQ, Lu JX, Lu HJ, et al. Epidemiological characteristics of diabetes mellitus and impaired glucose regulation in a Chinese adult population: the Shanghai Diabetes Studies, a cross-sectional 3-year follow-up study in Shanghai urban communities. Diabetologia. 2007;50:286–92.

    Article  CAS  PubMed  Google Scholar 

  6. Aekplakorn W, Abbott-Klafter J, Premgamone A, Dhanamun B, Chaikittiporn C, Chongsuvivatwong V, et al. Prevalence and management of diabetes and associated risk factors by regions of Thailand: Third National Health Examination Survey 2004. Diabetes Care. 2007;30:2007–12.

    Article  CAS  PubMed  Google Scholar 

  7. Wong KC, Wang Z. Prevalence of type 2 diabetes mellitus of Chinese populations in Mainland China, Hong Kong, and Taiwan. Diabetes Res Clin Pract. 2006;73:126–34.

    Article  PubMed  Google Scholar 

  8. The World Bank. List of countries by region and income status.

  9. International Diabetes Federation. IDF diabetes atlas. Brussels: International Diabetes Federation; 2009.

    Google Scholar 

  10. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care. 2001;24:1793–8.

    Article  CAS  PubMed  Google Scholar 

  11. May O, Arildsen H. Long-term predictive power of simple function tests for cardiovascular autonomic neuropathy in diabetes: a population-based study. Acta Diabetol. 2011;48:311–6.

    Article  CAS  PubMed  Google Scholar 

  12. Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q J Med. 1980;49:95–108.

    CAS  PubMed  Google Scholar 

  13. Maser RE, Lenhard MJ. Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.

    Article  CAS  PubMed  Google Scholar 

  14. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  15. Ratzmann KP, Raschke M, Gander I, Schimke E. Prevalence of peripheral and autonomic neuropathy in newly diagnosed type II (noninsulin-dependent) diabetes. J Diabet Complications. 1991;5:1–5.

    Article  CAS  PubMed  Google Scholar 

  16. Koenig J, Jarczok MN, Warth M, Ellis RJ, Bach C, Hillecke TK, et al. Body mass index is related to autonomic nervous system activity as measured by heart rate variability–a replication using short term measurements. J Nutr Health Aging. 2014;18:300–2.

    Article  CAS  PubMed  Google Scholar 

  17. Yi SH, Lee K, Shin DG, Kim JS, Kim HC. Differential association of adiposity measures with heart rate variability measures in Koreans. Yonsei Med J. 2013;54:55–61.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Chen GY, Hsiao TJ, Lo HM, Kuo CD. Abdominal obesity is associated with autonomic nervous derangement in healthy Asian obese subjects. Clin Nutr. 2008;27:212–7.

    Article  PubMed  Google Scholar 

  19. Salamin G, Pelletier C, Poirier P, Despres JP, Bertrand O, Almeras N, et al. Impact of visceral obesity on cardiac parasympathetic activity in type 2 diabetics after coronary artery bypass graft surgery. Obesity. 2013;21:1578–85.

    Article  PubMed  Google Scholar 

  20. Lampert R, Ickovics J, Horwitz R, Lee F. Depressed autonomic nervous system function in African Americans and individuals of lower social class: a potential mechanism of race- and class-related disparities in health outcomes. Am Heart J. 2005;150:153–60.

    Article  PubMed  Google Scholar 

  21. Osborn CY, de Groot M, Wagner JA. Racial and ethnic disparities in diabetes complications in the northeastern United States: the role of socioeconomic status. J Natl Med Assoc. 2013;105:51–8.

    PubMed Central  PubMed  Google Scholar 

  22. UNICEF. Cambodia statistics: 7/1/14.

  23. National Institute of Statistics, Directorate General for Health, and ICF Macro, 2011. Cambodia Demographic and Health Survey; 2010.

  24. National Committee for Sub-NationalDemocratic Development (NCDD). Siem Reap Data Book 2009. Published October, 2009.Available at http://scocambodia.org/wp-content/uploads/2013/07/1713_Svay-Leu-District-Data-Book-2009_English.pdf. Accessed Jan 25 2015.

  25. Wagner J, Lampert R, Tennen H, Feinn R. Exposure to Discrimination and heart rate variability reactivity to acute stress among women with diabetes. Stress Health. 2013.

  26. Lampert R, Tuit R, Sinha R. Chronic stress and adverse life events are associated with depressed autonomic function as measured by heart rate variability. Circulation. 2011;124, A10441.

    Google Scholar 

  27. Bigger Jr JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992;85:164–71.

    Article  PubMed  Google Scholar 

  28. Schroeder EB, Whitsel EA, Evans GW, Prineas RJ, Chambless LE, Heiss G. Repeatability of heart rate variability measures. J Electrocardiol. 2004;37:163–72.

    Article  PubMed  Google Scholar 

  29. DCCT Research Group. Feasibility of centralized measurements of glycated hemoglobin in the Diabetes Control and Complications Trial: a multicenter study. The DCCT Research Group. Clin Chem. 1987;33:2267–71.

    Google Scholar 

  30. Hoelzel W, Weykamp C, Jeppsson JO, Miedema K, Barr JR, Goodall I, et al. IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin Chem. 2004;50:166–74.

    Article  CAS  PubMed  Google Scholar 

  31. Nunan D, Sandercock GR, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33:1407–17.

  32. Kinge JM, Morris S. Variation in the relationship between BMI and survival by socioeconomic status in Great Britain. Econ Hum Biol. 2014;12:67–82.

    Article  PubMed  Google Scholar 

  33. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90:878–83.

    Article  CAS  PubMed  Google Scholar 

  34. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141:122–31.

    Article  PubMed  Google Scholar 

  35. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21:133–41.

    Article  PubMed Central  PubMed  Google Scholar 

  36. La Rovere MT, Bigger Jr JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction.ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–84.

    Article  PubMed  Google Scholar 

  37. Rowaiye OO, Jankowska EA, Ponikowska B. Baroreceptor sensitivity and diabetes mellitus. Cardiol J. 2013;20:453–63.

    Article  PubMed  Google Scholar 

  38. Pampel FC, Krueger PM, Denney JT. Socioeconomic disparities in health behaviors. Annu Rev Sociol. 2010;36:349–70.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Booth GL, Bishara P, Lipscombe LL, Shah BR, Feig DS, Bhattacharyya O, et al. Universal drug coverage and socioeconomic disparities in major diabetes outcomes. Diabetes Care. 2012;35:2257–64.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Braveman P, Cubbin C, Marchi K, Egerter S, Chavez G. Measuring socioeconomic status/position in studies of racial/ethnic disparities: maternal and infant health. Public Health Rep. 2001;116:449–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ramachandran A, Snehalatha C, Ma RC. Diabetes in South-East Asia: an update. Diabetes Res Clin Pract. 2014;103:231–7.

    Article  PubMed  Google Scholar 

  42. Marshall GN, Schell TL, Elliott MN, Berthold SM, Chun CA. Mental health of Cambodian refugees 2 decades after resettlement in the United States. JAMA. 2005;294:571–9.

    Article  CAS  PubMed  Google Scholar 

  43. Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care. 2008;31:2383–90.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Boyko EJ, Jacobson IG, Smith B, Ryan MA, Hooper TI, Amoroso PJ, et al. Risk of diabetes in U.S. military service members in relation to combat deployment and mental health. Diabetes Care. 2010;33:1771–7.

    Article  PubMed Central  PubMed  Google Scholar 

  45. de Rooij SR, Painter RC, Phillips DI, Osmond C, Michels RP, Godsland IF, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29:1897–901.

    Article  PubMed  Google Scholar 

  46. Bercovich E, Keinan-Boker L, Shasha SM. Long-term health effects in adults born during the Holocaust. Isr Med Assoc J. 2014;16:203–7.

    PubMed  Google Scholar 

  47. Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58:2718–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Peter Gloor, MD for his assistance with this project.

Conflict of interest

Authors Julie Wagner, Lim Keuky, Rachel Lampert, Lorraine Fraser-King, Richard Feinn, Theanvy Kuoch, and Mary Scully declare that they have no conflict of interest.

Ethics

The authors conformed to the Helsinki Declaration concerning human rights and followed correct procedures concerning treatment of human subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, J., Keuky, L., Lampert, R. et al. Socioeconomic Status, Waist-to-Hip Ratio, and Short-Term Heart Rate Variability in Cambodians with Type 2 Diabetes. Int.J. Behav. Med. 22, 786–791 (2015). https://doi.org/10.1007/s12529-015-9468-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12529-015-9468-0

Keywords

Navigation