Skip to main content

Advertisement

Log in

Epipelagic cnidarian fauna in the Western Equatorial Atlantic Ocean off the Amazon River Delta

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

We surveyed the epipelagic cnidarian fauna from the Western Equatorial Atlantic Ocean. A characteristic feature in this area is the freshwater discharge of the Amazon River, the largest continental inflow in the world’s oceans. We analyzed 87 plankton and 90 neuston samples collected at the neritic and oceanic provinces of the Western Tropical Atlantic under the influence of the Amazon River Plume off the north coast of Brazil. We studied 34,772 organisms corresponding to 7 orders, 31 families, and 93 species. Among them, Forskalia tholoides was a new record to the coast off South America, and 20 taxa were new regional records. Species accumulation curves and diversity estimators did not reach an asymptote and clearly suggested the occurrence of a considerably higher number of species. Sampling in different seasons, with different gears, and including deeper waters certainly will further increase the number of known pelagic cnidarian species in the area. Open ocean had higher diversity than the continental shelf, both for holoplanktonic and some meroplanktonic taxa. This trend can be related to complex circulation and topography. In conclusion, we observed high diversity in the epipelagic cnidarian community. The heterogeneity of habitats in the area is likely the main factor responsible for the high biodiversity, with samples from estuarine, coastal, neritic (with a large reef system), and oceanic waters. The wide salinity range caused by the Amazon River Plume and other oceanographic mesoscale processes such as eddies and opposite currents add further complexity to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Alvariño A (1968) Los quetognathos, sifonoforos y medusas en la region del Atlantico Ecuatorial bajo la influencia del Amazonas. An Inst Biol Univ Autónoma México 39:41–76

    Google Scholar 

  • Alvariño A (1971) Siphonophores of the Pacific, with a review of the world distribution. University of California Press, Berkeley

    Google Scholar 

  • Araujo EMD (2012) Sistemática y distribución de los sifonóforos (cnidaria/ hydrozoa) del océano atlántico sudoccidental. Universidad Nacional de Mar del Plata

    Google Scholar 

  • Araujo M, Noriega C, Hounsou-gbo GA et al (2017) A synoptic assessment of the Amazon River-Ocean Continuum during boreal autumn: from physics to plankton communities and carbon flux. Front Microbiol 8:1358. https://doi.org/10.3389/fmicb.2017.01358

    Article  PubMed  PubMed Central  Google Scholar 

  • Banha TNS, Morandini AC, Rosário RP, Martinelli Filho JE (2020) Scyphozoan jellyfish (Cnidaria, Medusozoa) from Amazon coast: distribution, temporal variation and length–weight relationship. J Plankton Res 42:767–778. https://doi.org/10.1093/plankt/fbaa056

    Article  Google Scholar 

  • Bastos DMRF, Haddad V, Nunes JLS (2017) Human envenomations caused by Portuguese man-of-war (Physalia physalis) in urban beaches of São Luis City, Maranhão State, Northeast Coast of Brazil. Rev Soc Bras Med Trop 50:130–134

    Article  PubMed  Google Scholar 

  • Biggs DC (1978) Athorybia lucida, a new species of siphonophore (Physonectae Athorybiidae) from the North Atlantic Ocean. Bull Mar Sci 28:537–542

    Google Scholar 

  • Blake JG, Loiselle BA (2000) Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk 117:663–686. https://doi.org/10.2307/4089592

    Article  Google Scholar 

  • Boero F, Bouillon J (1989) The life cycles of Octotiara russelli and Stomofoca atra (Cnidaria, Anthomedusae, Pandeidae). Zool Scr 18:1–7. https://doi.org/10.1111/j.1463-6409.1989.tb00118.x

    Article  Google Scholar 

  • Boero F, Bouillon J, Gravili C (1991) The life cycle of Hydrichthys mirus (Cnidaria: Hydrozoa: Anthomedusae: Pandeidae). Zool J Linn Soc 101:189–199. https://doi.org/10.1111/j.1096-3642.1991.tb00893.x

    Article  Google Scholar 

  • Boero F, Bouillon J, Piraino S (1996) Classifìcation and phylogeny in the Hydroidomedusae (Hydrozoa, Cnidaria). Sci Mar 60:17–33

    CAS  Google Scholar 

  • Boltovskoy D, Valentin JL (2018) Overview of the history of biological oceanography in the Southwestern Atlantic, with emphasis on plankton. In: Hoffmeyer MS, Sabatini ME, Brandini FP et al (eds) Plankton Ecology of the Southwestern Atlantic. Springer International Publishing, Cham, pp 3–34

    Chapter  Google Scholar 

  • Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity: scientific and technological challenges. Fundación BBVA, Bilbao, pp 31–64

    Google Scholar 

  • Bouillon J (1999) Hydromedusae. In: Boltovskoy D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, pp 424–512

    Google Scholar 

  • Bouillon J, Barnett TJ (1999) The marine fauna of New Zealand: Hydromedusae (Cnidaria: Hydrozoa). National Institute of Water and Atmospheric Research (NIWA), Wellington

    Google Scholar 

  • Bouillon J, Medel MD, Pagès F et al (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68:5–438. https://doi.org/10.3989/scimar.2004.68s25

    Article  Google Scholar 

  • Bouillon J, Gravili C, Pagès F et al (eds) (2006) An introduction to Hydrozoa. Publications Scientifiques du Muséum, Paris

    Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Brinckmann-Voss A (1973) The life-cycle of Eirene lactea (Mayer, 1900) and Helgicirrha schulzei Hartlaub, 1909 (phylum Cnidaria, class Hydrozoa, order Leptomedusae, family Eirenidae). Publ Seto Mar Biol Lab 20:63–72

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD et al (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Science:e1400253

  • Chaparro AMB, Peralta RHL (2013) Hidromedusas del Pacífico Colombiano: Aspectos Básicos de su Dinámica Ecológica. Rev Fac Cienc Básicas 9:108–131. https://doi.org/10.18359/rfcb.359

    Article  Google Scholar 

  • Chen H, Liu G (2010) Ecological characteristics of medusa in the Changjiang River Estuary and its adjacent waters in summer. Mar Sci 34:17–24

    Google Scholar 

  • Coles VJ, Brooks MT, Hopkins J et al (2013) The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean: AMAZON RIVER PLUME. J Geophys Res Oceans 118:6894–6913. https://doi.org/10.1002/2013JC008981

    Article  Google Scholar 

  • Condon RH, Duarte CM, Pitt KA et al (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci 110:1000–1005. https://doi.org/10.1073/pnas.1210920110

    Article  PubMed  Google Scholar 

  • Cornelius PFS (1990) European Obelia (Cnidaria, Hydroida): systematics and identification. J Nat Hist 24:535–578. https://doi.org/10.1080/00222939000770381

    Article  Google Scholar 

  • Dias L (1994) Siphonophora (Cnidaria, Hydrozoa) da região compreendida entre Cabo Frio, RJ (23°S) e Cabo de Santa Marta Grande, SC (29°S). PhD Dissertation, Universidade de São Paulo

  • Du F, Xu Z, Huang J et al (2009) Four new species and two new records of Hydrozoa from the northern of South China Sea and its adjacent waters, China (Cnidaria, Automedusa, Hydroidomedusa). Acta Zootaxonomica Sin 34:854–861

    Google Scholar 

  • Du F, Xu Z, Huang J, Guo D (2010) New records of medusae (Cnidaria) from Daya Bay, northern South China Sea, with descriptions of four new species. Proc Biol Soc Wash 123:72–86. https://doi.org/10.2988/09-18.1

    Article  Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR et al (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x

    Article  Google Scholar 

  • Forbes E (1848) A monograph of the British naked-eyed Medusæ : with figures of all the species. Ray Society, London

    Book  Google Scholar 

  • Francini-Filho RB, Asp NE, Siegle E et al (2018) Perspectives on the Great Amazon Reef: extension, biodiversity, and threats. Front Mar Sci 5:142. https://doi.org/10.3389/fmars.2018.00142

    Article  Google Scholar 

  • García-Comas C, Stemmann L, Ibanez F et al (2011) Zooplankton long-term changes in the NW Mediterranean Sea: decadal periodicity forced by winter hydrographic conditions related to large-scale atmospheric changes? J Mar Syst 87:216–226. https://doi.org/10.1016/j.jmarsys.2011.04.003

    Article  Google Scholar 

  • Gasca R (2002) Lista faunística y bibliografía comentadas de los sifonóforos (Cnidaria: Hydrozoa) de México. An Inst Biol Univ Nac Autónoma México Ser Zool 73:123–143

    Google Scholar 

  • Genzano GN, Giberto D, Schejter L et al (2009) Hydroid assemblages from the Southwestern Atlantic Ocean (34-42° S). Mar Ecol 30:33–46. https://doi.org/10.1111/j.1439-0485.2008.00247.x

    Article  Google Scholar 

  • Gili J-M, Bouillon J, Palanques A et al (1998) Origin and biogeography of the deep-water Mediterranean Hydromedusae including the description of two new species collected in submarine canyons of Northwestern Mediterranean. Sci Mar 62:113–134

    Google Scholar 

  • Greve W (1994) The 1989 german bight invasion of muggiaea atlantica. ICES J Mar Sci 51:355–358

    Article  Google Scholar 

  • Grossmann MM, Lindsay DJ, Fuentes V (2012) Sphaeronectes pughi sp. nov., a new species of sphaeronectid calycophoran siphonophore from the subantarctic zone. Polar Sci 6:196–199. https://doi.org/10.1016/j.polar.2011.11.001

    Article  Google Scholar 

  • Hayes DE, Ewing M (1970) North Brazilian Ridge and adjacent continental margin. Am Assoc Pet Geol Bull 54:2120–2150

    Google Scholar 

  • Herrera R, Moro L, Aiza O et al (2017) Primeros registros de invertebrados marinos para las islas Canarias (II). Rev Acad Canar Cienc 29:257–272

    Google Scholar 

  • Hewitt JE, Thrush SF, Dayton PD (2008) Habitat variation, species diversity and ecological functioning in a marine system. J Exp Mar Biol Ecol 366:116–122. https://doi.org/10.1016/j.jembe.2008.07.016

  • Hosia A, Båmstedt U (2007) Seasonal changes in the gelatinous zooplankton community and hydromedusa abundances in Korsfjord and Fanafjord,western Norway. Mar Ecol Prog Ser 351:113–127

    Article  Google Scholar 

  • Hosia A, Stemmann L, Youngbluth M (2008) Distribution of net-collected planktonic cnidarians along the northern Mid-Atlantic Ridge and their associations with the main water masses. Deep Sea Res Part II Top Stud Oceanogr 55:106–118. https://doi.org/10.1016/j.dsr2.2007.09.007

    Article  Google Scholar 

  • Johns WE, Lee TN, Schott FA et al (1990) The North Brazil Current retroflection: seasonal structure and eddy variability. J Geophys Res 95:22103. https://doi.org/10.1029/JC095iC12p22103

    Article  Google Scholar 

  • Kanashiro K (1985) Jellyfishes occurring in the coastal waters off Nagasaki Peninsula, Kyushu, Japan. Bull Fac Fish Nagasaki Univ 57:23–31

    Google Scholar 

  • Kitamura M, Kubota S, Murano M (1997) Description of some oceanic Hydromedusae from Japan. Publ Seto Mar Biol Lab 38:63–71. https://doi.org/10.5134/176270

    Article  Google Scholar 

  • Körtzinger A (2003) A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon River Plume. Geophys Res Lett 30:1–4. https://doi.org/10.1029/2003GL018841

    Article  CAS  Google Scholar 

  • Kramp PL (1955) The medusae of the tropical west coast of Africa. Danish Science Press, Copenhagen

    Google Scholar 

  • Kramp PL (1957) Hydromedusae (Hydrozoa) from the Discovery collections. Copenhagen

  • Kramp PL (1959a) The Hydromedusae of the Atlantic Ocean and adjacent waters. Carlsberg Foundation, Copenhagen

    Google Scholar 

  • Kramp PL (1959b) Some new and little-known Indo-Pacific medusae. Vidensk Meddelelser Fra Dan Naturhistorisk Foren 121:223–259

    Google Scholar 

  • Kramp PL (1961) Synopsis of the medusae of the World. J Mar Biol Assoc U K 40:1–469

    Article  Google Scholar 

  • Kramp PL (1962) Medusae of Vietnam. Vidensk Meddelelser Fra Dan Naturhistorisk Foren Kbh 124:305–366

    Google Scholar 

  • Lane PVZ, Llinás L, Smith SL, Pilz D (2008) Zooplankton distribution in the western Arctic during summer 2002: hydrographic habitats and implications for food chain dynamics. J Mar Syst 70:97–133. https://doi.org/10.1016/j.jmarsys.2007.04.001

    Article  Google Scholar 

  • Larson R (1982) Life history of the hydromedusa Stomotoca pterophylla Haeckel and its ichthyoparasitic hydroid. Smithsoninan Contrib Mar Sci 12:433–439

  • Lawley JW, Gamero-Mora E, Maronna MM et al (2021) The importance of molecular characters when morphological variability hinders diagnosability: systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa). PeerJ 9:e11954. https://doi.org/10.7717/peerj.11954

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecanda MJ, Siebenhaar MP, Tanzola RD (2016) Dermatitis de los bañistas asociada al contacto con la medusa Liriope tetraphylla en Monte Hermoso, Buenos Aires, Argentina. Rev Asoc Médica Bahía Blanca 26:43–49

    Google Scholar 

  • Leloup E (1934) Siphonophores Calycophorides de l’Océan Atlantique tropical et austral. Bull Mus R Hist Nat Belg 10:1–87

    Google Scholar 

  • Leloup E (1937) Résultats scientifiques des croisières du navire-école Belge “Mercator”. VI. Hydroidea, Siphonophora, Ceriantharia. Mém Mus R Hist Nat Belg 9:91–127

    Google Scholar 

  • Leloup E (1955) Siphonophores. Rep Sci Results MICHAEL SARS N Atl Deep-Sea Exped 1910 5:1–24

    Google Scholar 

  • Leloup E, Hentschel E (1938) Die Verbreitung der Calycophoren Siphonophoren im Sudatlantischen Ozean. Wiss ¨ Ergb Duetschen Atl Exped METEOR 1925-1927 12:1–31

  • Lindner A, Govindarajan AF, Migotto AE (2011) Cryptic species, life cycles, and the phylogeny of Clytia (Cnidaria: Hydrozoa: Campanulariidae). Zootaxa 2980:23. https://doi.org/10.11646/zootaxa.2980.1.2

  • Mapstone GM (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9:1–37. https://doi.org/10.1371/journal.pone.0087737

    Article  CAS  Google Scholar 

  • Maronna MM, Miranda TP, Peña Cantero ÁL et al (2016) Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa). Sci Rep 6:18075. https://doi.org/10.1038/srep18075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques AC, Shimabukuro V, Morandini AC, Migotto AE (2006) Cnidaria Medusozoa do litoral do estado do Ceará. In: Matthews-Cascon H, Lotufo TMC (eds) Biota Marinha da Costa Oeste do Ceará. Ministério do Meio Ambiente, Brasília

    Google Scholar 

  • Mayer AG (1900) Some medusae from the Tortugas, Florida. Bull Mus Comp Zool Harv 37:13–82

    Google Scholar 

  • Mesquita SSA, Costa RM, LCC P, Magalhães A (2006) Composição, ocorrência e distribuição das hidromedusas no estuário do rio Caeté, litoral do estado do Pará. Bol Mus Para Emílio Goeldi Ciênc Nat 1:113–119

    Article  Google Scholar 

  • Mianzan HW, Cornelius PFS (1999) Cubomedusae and Scyphomedusae. In: Boltovskoy D (ed) South Atlantic Zooplancton. Backhuys Publishers, Leiden, pp 513–559

    Google Scholar 

  • Molinari CG, Maronna MM, Morandini AC (2020) New record of Nausithoe werneri (Scyphozoa, Coronatae, Nausithoidae) from the Brazilian coast and a new synonymy for Nausithoe maculata. ZooKeys 984:1–21. https://doi.org/10.3897/zookeys.984.56380

  • Molleri GSF, Novo EMLM, Kampel M (2010) Space-time variability of the Amazon River Plume based on satellite ocean color. Cont Shelf Res 30:342–352. https://doi.org/10.1016/j.csr.2009.11.015

    Article  Google Scholar 

  • Morita H, Toyokawa M, Hidaka K et al (2017) Spatio-temporal structure of the jellyfish community in the transition zone of cold and warm currents in the northwest Pacific. Plankton Benthos Res 12:266–284. https://doi.org/10.3800/pbr.12.266

    Article  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:1–11. https://doi.org/10.1126/sciadv.1501252

    Article  CAS  Google Scholar 

  • Nagata RM, Nogueira Júnior M, Haddad MA (2014) Faunistic survey of Hydromedusae (Cnidaria, Medusozoa) from the coast of Paraná State, Southern Brazil. Zootaxa 3768:291–326. https://doi.org/10.11646/zootaxa.3768.3.3

  • Nawrocki AM, Schuchert P, Cartwright P (2010) Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zool Scr 39:290–304. https://doi.org/10.1111/j.1463-6409.2009.00419.x

    Article  Google Scholar 

  • Neumann-Leitão S, Melo PAMC, Schwamborn R et al (2018) Zooplankton from a reef system under the influence of the Amazon River Plume. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.00355

    Article  Google Scholar 

  • Nittrouer CA, DeMaster DJ (1996) The Amazon shelf setting: tropical, energetic, and influenced by a large river. Cont Shelf Res 16:553–573. https://doi.org/10.1016/0278-4343(95)00069-0

    Article  Google Scholar 

  • Nogueira Júnior M (2012) Gelatinous zooplankton fauna (Cnidaria, Ctenophora and Thaliacea) from Baía da Babitonga (southern Brazil). Zootaxa 3398:1–21

    Google Scholar 

  • Nogueira Júnior M, Rodriguez CS, Mianzan H et al (2013) Description of a new hydromedusa from the southwestern Atlantic Ocean, Bougainvillia pagesi sp. nov. (Cnidaria, Hydrozoa, Anthoathecata). Mar Ecol 34:113–122. https://doi.org/10.1111/maec.12030

    Article  Google Scholar 

  • Nogueira Júnior M, Brandini FP, Haddad MA (2016) First record of the hydromedusa Aequorea macrodactyla (Leptothecata: Aequoreidae) in Brazilian waters. Mar Biodivers. https://doi.org/10.1007/s12526-015-0421-x

  • Nogueira Júnior M, da Costa BSP, Martinez TA et al (2019) Diversity of gelatinous zooplankton (Cnidaria, Ctenophora, Chaetognatha and Tunicata) from a subtropical estuarine system, southeast Brazil. Mar Biodivers 49:1283–1298. https://doi.org/10.1007/s12526-018-0912-7

    Article  Google Scholar 

  • Nogueira Júnior M, Tosetto EG, Baldoni LC et al (2022) Gelatinous zooplankton. In: Pan J, Pratolongo PD (eds) Marine Biology A Functional Approach to the Oceans and their Organisms, 1st edn. CRC Press, Boca Raton, pp 150–179

    Google Scholar 

  • OBIS (2022) Ocean Biodiversity Information System. www.obis.org

  • Oliveira OMP, Miranda TP, Araujo EM et al (2016) Census of Cnidaria (Medusozoa) and Ctenophora from South American marine waters. Zootaxa 4194:1–256. https://doi.org/10.11646/zootaxa.4194.1.1

    Article  Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165. https://doi.org/10.4319/lo.1997.42.5_part_2.1154

    Article  CAS  Google Scholar 

  • Patry W, Knowles T, Christianson L, Howard M (2014) The hydroid and early medusa stage of Olindias formosus (Cnidaria, Hydrozoa, Limnomedusae). J Mar Biol Assoc U K 94:1409–1415

  • Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149. https://doi.org/10.1007/s10750-008-9584-9

    Article  CAS  Google Scholar 

  • Pugh PR (1984) The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 7. Siphonophores. Prog Oceanogr 13:461–489. https://doi.org/10.1016/0079-6611(84)90016-8

    Article  Google Scholar 

  • Pugh PR (1999) Siphonophorae. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 467–511

    Google Scholar 

  • Pugh PR (2003) A revision of the family Forskaliidae (Siphonophora, Physonectae). J Nat Hist 37:1281–1327. https://doi.org/10.1080/00222930110120638

    Article  Google Scholar 

  • Pugh PR (2009) A review of the family Sphaeronectidae (Class Hydrozoa, Order Siphonophora), with the description of three new species. Zootaxa 2147:1–48. https://doi.org/10.11646/zootaxa.2147.1.1

  • Purcell JE (1982) Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). J Exp Mar Biol Ecol 62:39–54

  • Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu Rev Mar Sci 4:209–235. https://doi.org/10.1146/annurev-marine-120709-142751

    Article  Google Scholar 

  • Purcell J, Uye S, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174. https://doi.org/10.3354/meps07093

    Article  Google Scholar 

  • QGIS Development Team (2022) QGIS Geographic Information System. Version 3.20 (software: https://www.qgis.org/)

  • Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci 98:4534–4539. https://doi.org/10.1073/pnas.071034898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos G, Segura-Puertas L (2004) Seasonal occurrence of reef-related medusae (Cnidaria) in the Western Caribbean Sea. Gulf Caribb Res 16:1–9. https://doi.org/10.18785/gcr.1601.01

  • Ranson G (1949) Résultats scientifiques des croisières du navire-école belge “Mercator”: II-Meduses. Mus R Hist Nat Belg Sér 2(33):121–158

    Google Scholar 

  • Raskoff KA, Robison BH (2005) A novel mutualistic relationship between a doliolid and a cnidarian, Bythotiara dolioeques sp. nov. J Mar Biol Assoc U K 85:583–593. https://doi.org/10.1017/S0025315405011513

    Article  Google Scholar 

  • Resgalla Junior C, Rosseto AL, Haddad V Jr (2011) Report of an outbreak of stings caused by Olindias sambaquiensis Muller, 1861 (Cnidaria: Hydrozoa) in southern Brazil. Braz J Oceanogr 59:391–396

    Article  Google Scholar 

  • Ress WJ (1962) Hydroids of the family Cytaeidae L. Agassiz, 1862. Br Mus Nat Hist 8:381–400

    Google Scholar 

  • Robison BH, Raskoff KA, Sherlock RE (2005) Ecological substrate in midwater: Doliolula equus, a new mesopelagic tunicate. J Mar Biol Assoc U K 85:655–663. https://doi.org/10.1017/S0025315405011586

    Article  Google Scholar 

  • Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171. https://doi.org/10.1046/j.1365-2699.2003.00900.x

    Article  Google Scholar 

  • Roveta C, Pica D, Puce S (2019) The cnidome of Olindias muelleri (Cnidaria: Hydrozoa: Limnomedusae) from South Adriatic Sea. Zoomorphology 138:437–442

    Article  Google Scholar 

  • Santana CS, Lira SMA, Varona HL et al (2020) Amazon River Plume influence on planktonic decapods in the tropical Atlantic. J Mar Syst 212:103428. https://doi.org/10.1016/j.jmarsys.2020.103428

    Article  Google Scholar 

  • Santhanam R (2020) Biology and ecology of venomous marine Cnidarians. Springer

    Book  Google Scholar 

  • Schuchert P (2003) Hydroids (Cnidaria, Hydrozoa) of the Danish expedition to the Kei Islands. Stenstrupia 27:137–256

    Google Scholar 

  • Schuchert P (2021) World Hydrozoa Database. http://www.marinespecies.org. Accessed 5 May 2018

  • Segura-Puertas L, Suárez-Morales E, Celis L (2003) A checklist of the medusae (Hydrozoa, Scyphozoa and Cubozoa) of Mexico. Zootaxa 194:1–15

    Article  Google Scholar 

  • Silva Junior OM, Magrini A (2014) Exploração de Hidrocarbonetos na Foz do Rio Amazonas: Perspectivas de Impactos Ambietais no Âmbito das Áreas Ofertadas na 11o Rodada de Licitações da Agência Nacional do Petroléo. Rev Geoamazônia 2:146–158. https://doi.org/10.17551/2358-1778/geoamazonia.v2n4p146-158

  • Smith WO, Demaster DJ (1996) Phytoplankton biomass and productivity in the Amazon River Plume: correlation with seasonal river discharge. Cont Shelf Res 16:291–319. https://doi.org/10.1016/0278-4343(95)00007-N

    Article  Google Scholar 

  • Subramaniam A, Yager PL, Carpenter EJ et al (2008) Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc Natl Acad Sci 105:10460–10465. https://doi.org/10.1073/pnas.0710279105

    Article  PubMed  PubMed Central  Google Scholar 

  • Tewksbury JJ, Anderson JGT, Bakker JD et al (2014) Natural History’s Place in Science and Society. BioScience 64:300–310. https://doi.org/10.1093/biosci/biu032

    Article  Google Scholar 

  • Thibault-Botha D, Lutjeharms JRE, Gibbons MJ (2004) Siphonophore assemblages along the east coast of South Africa; mesoscale distribution and temporal variations. J Plankton Res 26:1115–1128. https://doi.org/10.1093/plankt/fbh104

    Article  Google Scholar 

  • Thiel ME (1936) Systematische Studien an den Trachylinae der Meteorexpedition, zugleich ein Beitrag zu einer Revision der Trachylinae. Zool Jahrb 69:1–92

    Google Scholar 

  • Thiel ME (1938) Die Leptolina der “ Meteor” Expedition in Systematische Betrachtung (I. Anthomodusae). Zool Anz 121:289–303

    Google Scholar 

  • Tosetto EG, Neumann-Leitão S, Nogueira Júnior M (2018) New records of Pegantha spp. (Hydrozoa: Narcomedusae) off Northern Brazil. Papéis Avulsos Zool 58:e20185849. https://doi.org/10.11606/1807-0205/2018.58.49

  • Tosetto EG, Neumann-Leitão S, Nogueira Júnior M (2019) Sampling planktonic cnidarians with paired nets: implications of mesh size on community structure and abundance. Estuar Coast Shelf Sci 220:48–53. https://doi.org/10.1016/j.ecss.2019.02.027

    Article  Google Scholar 

  • Tosetto EG, Neumann-Leitão S, Nogueira Júnior M (2020) New species of Eirenidae (Hydrozoa: Leptothecata) from the Amazonian coast (northern Brazil). Sci Mar 84:421–430. https://doi.org/10.3989/scimar.05051.14A

    Article  Google Scholar 

  • Tosetto EG, Bertrand A, Neumann-Leitão S et al (2021a) Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. J Plankton Res 43:270–287. https://doi.org/10.1093/plankt/fbaa066

    Article  Google Scholar 

  • Tosetto EG, Neumann-Leitão S, Bertrand A, Júnior MN (2021b) First record of Cirrholovenia polynema (Hydrozoa: Leptothecata) in the Western Atlantic Ocean. Ocean Coast Res 69:e21006. https://doi.org/10.1590/2675-2824069.20-001egt

    Article  Google Scholar 

  • Tosetto EG, Bertrand A, Neumann-Leitão S, Nogueira Júnior M (2022) The Amazon River Plume, a barrier to animal dispersal in the Western Tropical Atlantic. Sci Rep 12:537. https://doi.org/10.1038/s41598-021-04165-z

    Article  CAS  Google Scholar 

  • Vannucci M (1957) On Brazilian hydromedusae and their distribution in relation to different water masses. Bol Inst Ocean 8:23–109

    Article  Google Scholar 

  • Varona HL, Veleda D, Silva M et al (2019) Amazon River Plume influence on Western Tropical Atlantic dynamic variability. Dyn Atmospheres Oceans 85:1–15. https://doi.org/10.1016/j.dynatmoce.2018.10.002

    Article  Google Scholar 

  • Wang C, Xu Z, Guo D et al (2018) Taxonomic notes on Hydroidomedusae (Cnidaria) from the South China Sea V: Families Laodiceidae, Lovenellidae, Malagazziidae, and Mitrocomidae (Leptomedusae). Acta Oceanol Sin 37:104–111. https://doi.org/10.1007/s13131-018-1309-y

    Article  Google Scholar 

  • Xu Z, Huang J (2004) On new species and record of Laingiomedusae and Leptomedusae (Cnidaria, Hydrozoa, Hydroidomedusae) in the Taiwan Strait. J Xiamen Univ Nat Sci 43:107–114

    Google Scholar 

  • Xu Z, Lin M, Gao Q (2008) Causal analysis of the diversity of medusae in East China Sea. Front Biol China 3:300–307. https://doi.org/10.1007/s11515-008-0057-3

    Article  Google Scholar 

  • Yilmaz IN (2015) Collapse of zooplankton stocks during Liriope tetraphylla (Hydromedusa) blooms and dense mucilaginous aggregations in a thermohaline stratified basin. Mar Ecol 36:595–610. https://doi.org/10.1111/maec.12166

    Article  Google Scholar 

  • Zingmark RG (1978) An annotated checklist of the biota of the coastal zone of South Carolina. University of South Carolina Press, Columbia

    Google Scholar 

Download references

Acknowledgements

We especially thank Dr. Dhugal Lindsay for the useful insights on species identification. We also thank Dr. Xikun Song and the anonymous reviewer whose comments/suggestions helped improve and clarify this manuscript.

Funding

Sampling project was funded by the Brazilian National Institute of Science and Technology for Tropical Marine Environments (INCT AmbTropic), the Brazilian Research Network on Global Climate Change (Rede CLIMA), and the European Integrated CARBOCHANGE. The CNPq (Brazilian National Council for Scientific and Technological Development) provided a PhD scholarship to E. G. T. (grant 140897/2017-8) and a Research Scholarship to S. N. L. and M. A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everton Giachini Tosetto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the Acknowledgements/Funding.

Data availability

Data generated or analyzed during this study are included in this published article.

Author contribution

MA and SNL conceived and designed the research project. MA led the samplings. EGT and MNJ examined materials, identified species, and performed data analysis. EGT and MNJ wrote the initial version of the manuscript. All authors revised and approved the final manuscript.

Additional information

Communicated by D. Maggioni

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giachini Tosetto, E., Neumann-Leitão, S., Araujo, M. et al. Epipelagic cnidarian fauna in the Western Equatorial Atlantic Ocean off the Amazon River Delta. Mar. Biodivers. 52, 50 (2022). https://doi.org/10.1007/s12526-022-01286-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-022-01286-0

Keywords

Navigation