Skip to main content

Diversity, distribution, and habitat associations of deep-water echinoderms in the Central Mediterranean

Abstract

Limited research effort in the Central Mediterranean deep sea has reported a lower species diversity in this area than in adjacent regions. With the recent advent of remotely operated underwater vehicles (ROVs), the deep sea has become more accessible to surveys, especially rocky benthic areas such as canyons and escarpments. The aim of the present study was to assess diversity, spatial and bathymetric distribution, density, habitat, and microhabitat associations of echinoderms in deep waters around the Maltese Islands. Video data were acquired through ROV surveys as part of the LIFE BaĦAR for N2K project, at depths of 216 to 1031 m. In total, 25 echinoderm taxa were recorded, including the first Central Mediterranean records of the sea stars Marginaster capreensis (Gasco, 1876) and Sclerasterias neglecta (Perrier, 1891), and the first record of the holothuroid Mesothuria intestinalis (Ascanius, 1805) from Maltese waters. Six species were observed deeper than their currently accepted depth range in the Mediterranean. The most abundant species were the crinoids Antedon mediterranea (Lamarck, 1816) and Leptometra phalangium (Müller, 1841), which formed very dense aggregations of up to 2900 individuals/1000 m2 in a small area to the south of Malta. This area also supports the only known Mediterranean population of the Atlantic sea star Coronaster briareus (Verrill, 1882). Bathymetric distribution varied for each species, and the overall echinoderm diversity seemed stable across the surveyed depths. Since previous deep-sea studies in the area were based on trawling surveys, many deep-sea echinoderm species are reported in the literature as occurring on sedimentary bottoms. However, the present study revealed that several occur more often on rocky substrata, corals, or anthropogenic objects than on sediments. Our study based on video footage also provided insights into the microhabitat of many deep-sea species, yielding information that is not obtainable through remote sampling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ascanius P (1805) Icones Rerum Naturalium, ou figures enluminées d’histoire naturelle du Nord. In: Copenhagen, pp 1–8

    Google Scholar 

  • Bensettiti F, Bioret F, Roland J, Lacoste JP (2004) Habitats côtiers

    Google Scholar 

  • Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Biodivers Enclosed Seas Artif Mar Habitats 580:7–21. https://doi.org/10.1007/978-1-4020-6156-1_1

    Article  Google Scholar 

  • Bo M, Canese S, Bavestrello G (2019) On the coral-feeding habit of the sea star Peltaster placenta. Mar Biodivers 49:2009–2012. https://doi.org/10.1007/s12526-018-0931-4

    Article  Google Scholar 

  • Bowser P, Knittweis L (2019) Litter from dolphinfish fish aggregation devices (FADs): management perspectives based on a Maltese case study. Rapp Comm int Mer Médit 42:276

    Google Scholar 

  • Bruzelius N (1805) Dissertatio sistens species cognitas asteriarum, quamr. sub praesidio A.J. Retzii. exhibet N. Bruzelius

  • Cartes JE, Maynou F, Fanelli E et al (2009) The distribution of megabenthic, invertebrate epifauna in the Balearic Basin (western Mediterranean) between 400 and 2300 m: environmental gradients influencing assemblages composition and biomass trends. J Sea Res 61:244–257. https://doi.org/10.1016/j.seares.2009.01.005

    Article  Google Scholar 

  • Clark HL (1925) A catalogue of the recent sea-urchins (Echinoidea) in the collection of the British Museum (Natural History). Oxford Univ Press, p 250

  • CoCoNet project (2016) Revised list of Mediterranean and Black Sea habitats. http://cordis.europa.eu/result/rcn/181925_en.html

  • Coll M, Piroddi C, Steenbeek J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5. https://doi.org/10.1371/journal.pone.0011842

  • Colloca F, Carpentieri P, Balestri E, Ardizzone GD (2004) A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Mar Biol 145:1129–1142. https://doi.org/10.1007/s00227-004-1405-8

    Article  Google Scholar 

  • Cuvier G (1817) Les Annélides. In: Paris D (ed) Le règne animal distribué d’apres son organisation, pour servir de base a l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, vol 2, pp 515–532

    Google Scholar 

  • Danovaro R, Company JB, Corinaldesi C et al (2010) Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One 5:1–25. https://doi.org/10.1371/journal.pone.0011832

    Article  CAS  Google Scholar 

  • DeLaHoz MV, Sardà F, Coll M et al (2018) Biodiversity patterns of megabenthic non-crustacean invertebrates from an exploited ecosystem of the Northwestern Mediterranean Sea. Reg Stud Mar Sci 19:47–68. https://doi.org/10.1016/j.rsma.2018.03.002

    Article  Google Scholar 

  • Delle Chiaje (1828) Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli. Napoli Frat Fernandes (vol 1), Soc Tipogr (vol 2–4). https://doi.org/10.5962/bhl.title.10021

  • Düben MW (1844) Norriges Hafs-fauna. In: Öfversigt af Kongl Vetenskaps-akademiens Forh, pp 110–116

    Google Scholar 

  • von Düben MW, Koren J (1844) Öfversigt af Skandinaviens Echinodermer [Overview of Scandinavian Echinodermata]. K Sven Vetenskapsakademiens Handl:229–328

  • Evans J, Knittweis L, Aguilar R et al (2018) On the occurrence of Coronaster briareus (Echinodermata, Forcipulatida, Asteriidae) in the Mediterranean Sea. Mar Biodivers 48:1381–1390. https://doi.org/10.1007/s12526-016-0617-8

  • Gasco F (1876) Descrizione di alcuni Echinodermi nuovi o per la prima trovati nel Mediterraneo. Rend dell’Accademia delle Sci Fische e Mat 15:32–41

    Google Scholar 

  • González-Irusta JM, Preciado I, López-López L et al (2014) Trawling disturbance on the isotopic signature of a structure-building species, the sea urchin Gracilechinus acutus (Lamarck, 1816). Deep Res Part II Top Stud Oceanogr 106:216–224. https://doi.org/10.1016/j.dsr2.2013.09.036

    Article  CAS  Google Scholar 

  • González-Irusta PA, Serrano A (2012) Environmental and fisheries effects on Gracilechinus acutus (Echinodermata: Echinoidea) distribution: is it a suitable bioindicator of trawling disturbance? ICES J Mar Sci 69:1457–1465. https://doi.org/10.1093/icesjms/fss102

    Article  Google Scholar 

  • Gray JE (1840) XXXII. A synopsis of the genera and species of the class Hypostoma (Asterias, Linnaeus). Ann Mag Nat Hist 6:275–290

    Google Scholar 

  • Hebbeln D, Widenberg C, Beuck L et al (2009) Report and preliminary results of RV POSEIDON Cruise POS 385 cold-water corals of the Alboran Sea (western Mediterranean Sea). Berichte aus dem Fachbereich der Geowissenschaften der Univ Bremen:1–79

  • Hernández JC, Clemente S, Tuya F et al (2013) Echinoderms of the Canary Islands, Spain. Springer Berlin Heidelberg, Berlin

    Google Scholar 

  • Koehler R (1921) Faune de France: Échinodermes. In: Lechevalier

    Google Scholar 

  • Koukouras A, Sinis AI, Bobori D et al (2007) The echinoderm (Deuterostomia) fauna of the Aegean Sea , and comparison with those of the neighbouring seas. J Biol Res 7:67–92

    Google Scholar 

  • Lamarck JBM de (1816) Histoire naturelle des animaux sans vertèbres, Tome troisième

  • Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. In: Editio decima, reformata [10th revised edition], vol 1. Laurentius Salvius, Holmiae, p 824

    Google Scholar 

  • Lyman T (1879) Ophiuridae and Astrophytidae of the “Challenger” expedition. In: Part II. Bull Museum Comp Zool Harvard Coll Cambridge, Mass

    Google Scholar 

  • Mastrototaro F, Mifsud C (2008) Some observations on the morphology of Sclerasterias richardi a rarely encountered Mediterranean Sea star (Echinodermata: Asteriidae). Mediterr Mar Sci 9:103–110

    Google Scholar 

  • Mecho A, Billett DSM, Ramirez-Llodra E et al (2014) First records, rediscovery and compilation of deep-sea echinoderms in the middle and lower continental slope of the Mediterranean Sea. Sci Mar 78:281. https://doi.org/10.3989/scimar.03983.30C

    Article  Google Scholar 

  • Michez N, Fourt M, Aish A et al (2014) Typologie des biocénoses benthiques de Méditerranée Version 2. Rapp SPN MNHN, Paris 33:26

    Google Scholar 

  • Mifsud C, Taviani M, Stöhr S (2009) Remarks on Echinodermata from the South Central Mediterranean Sea based upon collections made during the MARCOS cruise (10 to 20th April, 2007). Mediterr Mar Sci 10:63–72

    Google Scholar 

  • Milne-Edwards H (1882) Rapport sur les Travaux de la Commission chargée par M. le Ministre de l’Instruction Publique d’étudier la faune sous-marine dans les grandes profondeurs de la Méditerranée et de l’Océan Atlantique. Arch des Mission Sci littéraires 9:1–59

    Google Scholar 

  • Mortensen T (1927) Handbook of the echinoderms of the British Isles. Oxford university Press

  • Müller J (1841) Über die Gattungen und Arten der Comatulen. Monatsberichte Königlich Preuss Akad der Wissenschaften zu Berlin

    Google Scholar 

  • Müller J, Troschel FH (1842) System der Asteriden.1. Asteriae. 2. Ophiuridae. Vieweg: Braunschweig

  • Müller OF (1789) Zoologia Danica seu animalium Daniae et Norvegiae rariorum ac minus notorum descriptiones et historia. N Molleri Filii, Havniae

    Google Scholar 

  • Pace R, Dimech M, Camilleri M, Cabalenas Mosteiro A (2007a) Distribution and density of discarded limestone slabs used in the traditional Maltese lampuki fishery. Rapp Comm int Mer Médit 38:568

    Google Scholar 

  • Pace R, Dimech M, Camilleri M, Schembri PJ (2007b) Litter as a source of habitat islands on deep water muddy bottoms. Rapp Comm int Mer Médit 38:567

    Google Scholar 

  • Pennant T (1777) British zoology, vol IV. Crustacea. Mollusca. Testacea, London

    Google Scholar 

  • Perrier E (1891) Stellerides nouveaux provenant des campagnes du yacht l’Hirondelle. Mémoires la Société Zool Fr 4:258–271

    Google Scholar 

  • Philippi RA (1845) Beschreibung einiger neuer Echinodermen nebst kritischen Bemerckungen über einige weniger bekannte Arten. Arch für Naturgeschichte 11:344–359

    Google Scholar 

  • Risso A (1826) Histoire naturelle des principales productions de l’Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Levrault, Paris, pp 1–480. https://doi.org/10.5962/bhl.title.58984

    Book  Google Scholar 

  • Rodriguez J (1980) Echinoderms (except Holothuroidea) of the Southern Mediterranean coast of Spain. In: Echinoderms: present and past. pp 127–131

  • Rueda JL, Urra J, Aguilar R et al (2019) 29 cold-water coral associated fauna in the Mediterranean Sea and adjacent areas. Springer, Cham, pp 295–333

    Google Scholar 

  • Sars GO (1872) Nye Echinodermer fra den norske kyst. Forh i Vidensk i Christ 1871:1–31

    Google Scholar 

  • Southward EC, Campbell AC, London LS of, Association E and CS (2006) Echinoderms: keys and notes for the identification of British species. Linnean Society of London and the Estuarine and Coastal Sciences Association

  • Stevenson A, Davies JS, Williams A et al (2018) Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution. Deep Res Part I Oceanogr Res Pap 133:27–38. https://doi.org/10.1016/j.dsr.2018.01.007

    Article  Google Scholar 

  • Stevenson A, Kroh A (2020) Deep-sea sea urchins. Dev Aquac Fish Sci 43:237–254. https://doi.org/10.1016/B978-0-12-819570-3.00014-7

    Article  Google Scholar 

  • Stevenson A, Rocha C (2013) Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic. Deep Res Part I Oceanogr Res Pap 71:73–78. https://doi.org/10.1016/j.dsr.2012.09.005

    Article  Google Scholar 

  • Taboada S, Pérez-Portela R (2016) Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci Rep 6:1–13. https://doi.org/10.1038/srep32425

    Article  CAS  Google Scholar 

  • Tanti CM, Schembri PJ (2006) A synthesis of the echinoderm fauna of the Maltese islands. J mar biol Ass UK 86:163–165. https://doi.org/10.1017/S0025315406012987

    Article  Google Scholar 

  • Taviani M, Angeletti L, Canese S et al (2017) The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems. Deep Res Part II Top Stud Oceanogr 145:61–78. https://doi.org/10.1016/j.dsr2.2015.12.008

    Article  Google Scholar 

  • Taviani M, Angeletti L, Ceregato A et al (2010) The crinoid garden of Montecristo Island Marine Sanctuary (Tuscan archipelago National Park , Mediterranean Sea). Rapp Comm int Mer Médit 39:674

    Google Scholar 

  • Terribile K, Evans J, Knittweis L, Schembri PJ (2015) Maximising MEDITS: using data collected from trawl surveys to characterise the benthic and demersal assemblages of the circalittoral and deeper waters around the Maltese Islands (Central Mediterranean). Reg Stud Mar Sci 3:163–175. https://doi.org/10.1016/j.rsma.2015.07.006

    Article  Google Scholar 

  • Terribile K, Schembri PJ (2013) Depth distribution of Cidaris cidaris (Linnaeus, 1758) and Stylocidaris affinis (Philippi, 1845)(Echinodermata, Echinoidea) around the Maltese Islands. Rapp Comm int Mer Médit 40:697

    Google Scholar 

  • Tortonese E (1965) ECHINODERMATA, Fauna d’Italia 6. Calderini, Bologna

  • Verrill AE (1882) Notice of the remarkable marine fauna occupying the outer banks off the southern coast of New England, No 4. i>American J Sci 3:216–225

  • von Marenzeller E (1893) Berichte der Commission für Erforschung des östlichen Mittelmeeres. Zoologische Ergebnisse. In: 1.Echinodermen gesammelt 1890, 1891 und 1892. Denkschriften Kais Akad Wissenschaften, Wien

    Google Scholar 

Download references

Acknowledgements

We thank the crew of the Oceana Ranger for their assistance with the ROV surveys. We are also grateful to Prof. Rocío Pérez-Portela for assistance with the identification of Ophiothrix fragilis and to Dr. Andreas Kroh for supplying us with the identification key for Cidaridae. The present work was undertaken as part of the LIFE BaĦAR for N2K (LIFE12 NAT/MT/000845) Project, which was 50% co-financed by the EU LIFE+ Funding Programme and implemented by the Maltese Environment and Resources Authority (ERA), the University of Malta, Fundación Oceana, the Ministry for the Environment, Sustainable Development, and Climate Change (MESDC), and the Department for Fisheries and Aquaculture within MESDC. We are also grateful to ERA and to the Continental Shelf Department within the Ministry for Transport and Infrastructure (Malta) for granting us the necessary permits to undertake the marine surveys. We also thank two anonymous reviewers for their helpful comments.

Funding

This study was funded by the EU LIFE+ Funding Programme (grant number LIFE12 NAT/MT/000845, awarded to LIFE BaĦAR for N2K Consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Leonard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). The conclusions of this paper do not rely on any publicly available data.

Author contribution statement

PJS, JAB, and RA conceived and designed the research. RA led the offshore research cruises supported by SG and HA; JE and LK also contributed to the field sampling. CL extracted and analysed the data and wrote the manuscript together with JE. All authors reviewed and approved the manuscript.

Additional information

Communicated by S. Stöhr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3170 kb)

ESM 2

(DOCX 22 kb)

ESM 3

(DOCX 33 kb)

ESM 4

(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, C., Evans, J., Knittweis, L. et al. Diversity, distribution, and habitat associations of deep-water echinoderms in the Central Mediterranean. Mar. Biodivers. 50, 69 (2020). https://doi.org/10.1007/s12526-020-01095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01095-3

Keywords