Skip to main content

Advertisement

Log in

Taxonomic diversity, size-functional diversity, and species dominance interrelations in phytoplankton communities: a critical analysis of data interpretation

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Species diversity, functional diversity, species richness, and dominance are fundamental topics in conservation ecology, but studies on their interrelationship remain underexplored and controversial issues in the literature. This investigation is a critical analysis focusing on the interrelations between species taxonomic diversity (based on the Shannon diversity index), cell size-based functional diversity (as a measure of Rao’sQ), species richness (number of species), and species dominance (as per McNaughton’s dominance index) in marine phytoplankton communities. The results revealed no statistical relationship between Shannon’s and Rao’sQ diversity indices, as well as no correlation between these indices and species richness. The importance of the applied functional diversity metric (Rao’sQ) for data interpretation and the misuse of species richness as a species diversity surrogate in the literature were discussed. The taxonomic composition and cell size of the dominant species and the dominant index over time were described. The species dominance index was related to Shannon’s species diversity and Rao’sQ functional diversity according to a negative linear regression, and the inverse correlation between these properties was statistically significant suggesting the species dominance control over the examined diversity system. Patterns across the data sets of species dominance and total community cell abundance showed resembling temporal fluctuations over a 2-year period, implying that species dominance may be a critical driver affecting temporal variations in total community cell abundance. This work provides a comprehensive critical evaluation of the link between taxonomic and functional diversity, and information on the importance of phytoplankton species dominance in maintaining ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abonyi A, Horváth Z, Ptacnik R (2017) Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshw Biol 63:178–186. https://doi.org/10.1111/fwb.13051

    Article  CAS  Google Scholar 

  • Acevedo-Trejos E, Brandt G, Bruggeman J, Merico A (2015) Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Sci Rep 5:8918. https://doi.org/10.1098/rspb.2018.0621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RG, Jin Y, Goulden ML (2012) Assessing regional evapotranspiration and water balance across a Mediterranean montane climate gradient. Agr Forest Meteor 166–167:10–22. https://doi.org/10.1016/j.agrformet.2012.07.004

  • Avolio ML, Forrestel EJ, Chang CC, La Pierre KJ, Burghardt KT (2019) Smith MD (2019) demystifying dominant species. New Phytol 223:1106–1126. https://doi.org/10.1111/nph.15789

    Article  PubMed  Google Scholar 

  • Bazzoni AM, Pulina S, Padedda BM, Satta CT, Lugliè A, Sechi N, Facca C (2013) Water quality evaluation in Mediterranean lagoons using the Multimetric Phytoplankton Index (MPI): sStudy cases from Sardinia. Transit Waters Bull 7:64–76 https://doi.org/10.1285/i1825229Xv7n1p64

  • Biswas SR, Mallik AU (2011) Species diversity and functional diversity relationship varies with disturbance intensity. Ecosphere 2:art52. https://doi.org/10.1890/ES10-002061

    Article  Google Scholar 

  • Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA (2015) The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res 38:1021–1035. https://doi.org/10.1093/plankt/fbv087

    Article  CAS  Google Scholar 

  • Brewin RJW, Hardman-Mountford NJ, Lavender SJ, Raitsos DE, Hirata T, Uitz J, Devred E, Bricaud A, Ciotti A, Gentili B (2011) An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sens Environ 115:325–339. https://doi.org/10.1016/j.rse.2010.09.004

  • Bricaud A, Ciotti AM, Gentili B (2012) Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of Sea WiFS data (1998–2009). Global Biogeochem cycles 26(1): GB1010. https://doi.org/10.1029/2010GB003952

  • Buchberger F, Stockenreiter M (2018) Unsuccessful invaders structure a natural freshwater phytoplankton community. Ecosphere 9(3):e02158. https://doi.org/10.1002/ecs22158

    Article  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

  • Cardoso SJ, Nabout JC, Farjalla VF, Lopes PM, Bozelli RL, Huszar VLM, Roland F (2017) Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia 802:115–130. https://doi.org/10.1007/s10750-017-3244-x

  • Chiarucci A, Bacaro G, Scheiner SM (2011) Old and new challenges in using species diversity for assessing biodiversity. Phil Trans R Soc B 366:2426–2437. https://doi.org/10.1098/rstb.2011.0065

    Article  PubMed  Google Scholar 

  • Chust G, Vogt M, Benedetti F, Nakov T, Villéger S, Aubert A, Vallina SM, Righetti D, Not F, Biard T, Bittner L, Benoiston A-S, Guidi L, Villarino E, Gaborit C, Cornils A, Buttay L, Irisson J-O, Chiarello M, Vallim AL, Blanco-Bercial L, Basconi L, Guilhaumon F, Ayata S-D (2017) Corrigendum: MareIncognitum: a glimpse into future plankton diversity and ecology research. Front Mar Sci 4:122. https://doi.org/10.3389/fmars.2017.00122

    Article  Google Scholar 

  • Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, Ward BA (2020) Dimensions of marine phytoplankton diversity. Biogeosciences 15:609–634. https://doi.org/10.5194/bg-17-609-2020

    Article  Google Scholar 

  • EUR 24338 EN, Ferreira J.G, Andersen J.H, Borja A, Bricker S.B, Camp J, Cardoso da Silva M, Garcés E, Heiskanen A.S, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2010) Marine Strategy Framework Directive. Task Group 5 Report Eutrophication. U. Joint Research Centre. Office for Official Publications of the European Communities, Luxembourg, pp. 49

  • Ferreira JG, Andersen JH, Borja SA, Bricker SB, Camp J, Cardoso da Silva M, Garcés E, Heiskanen AS, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2011) Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar Coast Shelf Sci 93:117–131. https://doi.org/10.1016/j.ecss.2011.03.014

  • Gallego I, Davidson TA, Jeppesen E, Pérez-Martínez C, Sánchez-Castillo P, Juan M, Fuentes-Rodríguez F, León D, Peñalver P, Toja J, Casas JJ (2012) Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecol Indic 18:575–585. https://doi.org/10.1016/j.ecolind.2012.01.002

  • García-Comas C, Sastri AR, Ye L, Chang C-Y, Lin F-S, Su M-S, Gong G-C, C-h H (2016) Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities. Proc R Soc B 283:20152129. https://doi.org/10.1098/rspb.2015.2129

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ, He F (2002) The distribution of species range size: a stochastic process. Proc R Soc Lond B 269:1079–1086

    Article  Google Scholar 

  • Gharib SM, El-Sherif ZM, Abdel-Halim AM, Radwan AA (2011) Phytoplankton and environmental variables as a water quality indicatorfor the beaches at Matrouh, south-eastern Mediterranean Sea, Egypt: an assessment. Oceanologia 53:819–836. https://doi.org/10.5697/oc.53-3.819

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520

    Article  PubMed  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S, Lewandowska AM, Seabloom EW, Van de Waal DB, Ryabov AB (2018) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55:169–184. https://doi.org/10.1111/1365-2664.12959

  • Hodapp D, Meier S, Muijsers F, Badewien TH, Hillebrand H (2015) Structural equation modeling approach to the diversity−productivity relationship of Wadden Sea phytoplankton 2015. Mar Ecol Prog Ser 523:31–40. https://doi.org/10.3354/meps11153

  • Hu G, Jin Y, Liu J, Yu M (2014) Functional diversity versus species diversity: relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest. Ecol Res 29:897–903. https://doi.org/10.1007/s11284-014-1178-6

  • Ignatiades L (1994) Species dominance and niche breath in “bloom” and “non-bloom” phytoplankton populations. Oceanol Acta 17:89–96

    Google Scholar 

  • Ignatiades L (2016) Redefinition of cell size classification of phytoplankton–a potential tool for improving the quality and assurance of data interpretation. Mediterr Mar Sci 17:56–64. https://doi.org/10.12681/mms.1332

  • Ignatiades L (2017) Size scaling patterns of species richness and carbon biomass for marine phytoplankton functional groups. Mar Ecol 38:e12454. https://doi.org/10.1111/maec12454

    Article  Google Scholar 

  • Ignatiades L, Gotsis-Skretas O, Metaxatos A (2007) Field and culture studies on the ecophysiology of the toxic dinoflagellate Alexandrium minutum (Halim) present in Greek coastal waters. Harmful Algae 6:153–165. https://doi.org/10.1016/j.hal.2006.04.002

  • Keys M, Tilstone G, Findlay HS, Widdicombe CE, Lawson T (2018) Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel. Biogeosciences 15:3203–3222. https://doi.org/10.5194/bg-15-3203-2018

  • Lepš J, de Bello F, Lavore S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501

    Google Scholar 

  • Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ (2015) Plant functional diversity can be independent of species diversity: observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLoS ONE 10:e0136040. https://doi.org/10.1371/journal.pone.0136040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10:1170–1181. Epub 2007 Oct 9. https://doi.org/10.1111/j.1461-0248.2007.01117.x.

  • Lugoli F, Garmendia M, Lehtinen S, Kauppila P, Moncheva S, Revilla M, Roselli L, Slabakova N, Valencia V, Dromph KM, Basset A (2012) Application of a new multi-metric phytoplankton index to the assessment of ecological status in marine and transitional waters. Ecol Indic 23:338–355. https://doi.org/10.1016/j.ecolind.2012.03.030

  • Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582. Epub 2010 Jul 23. https://doi.org/10.1016/j.tree.2010.06.016

  • Martín-Vega D, Cifrián B, Díaz-Aranda LM, Baz A (2014) Environmental correlates of species diversity for sarcosaprophagous Diptera across a pronounced elevational gradient in central Spain. Ital J Zool 81:415–424. https://doi.org/10.1080/11250003.2014.940007

  • McNaughton SJ (1967) Relationships among functional properties of Californian grasslands. Nature 216:168–169

    Article  Google Scholar 

  • Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, Wurst S, Rillig MC (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 18:3514–3524. Epub 2014 Aug 28. https://doi.org/10.1002/ece3.1155

  • Mutshinda CM, Finkel ZV, Irwin AJ (2013) Which environmental factors control phytoplankton populations? A Bayesian variable selection approach. Ecol Model 269:1–8. https://doi.org/10.1016/j.ecolmodel.2013.07.025

  • Perronne R, Mauchamp L, Mouly A, Gillet F (2014) Contrasted taxonomic, phylogenetic and functional diversity patterns in semi-natural permanent grasslands along an altitudinal gradient. Plant Ecol Evol 147:165–175. https://doi.org/10.5091/plecevo.2014.885

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

  • Peter KH, Sommer U (2012) Phytoplankton cell size: intra- and interspecific effects of warming and grazing. PLoS One 7:e49632. https://doi.org/10.1371/journal.pone.0049632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polovina JJ, Woodworth PA (2012) Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep-Sea Res II 77–80:82–88. https://doi.org/10.1016/j.dsr2.2012.04.006

  • Rocchini D, Marcantonio M, Ricotta C (2017) Measuring Rao’s Q diversity index from remote sensing: an open source solution. Ecol Indic 72:234–238. https://doi.org/10.1016/j.ecolind.2016.07.039

  • Rombouts I, Simona N, Aubertb A, Cariouc T, Feunteunb E, Guérine L, Hoebekec M, McQuatters-Gollopf A, Rigaut-Jalabertc F, Artigasd LF (2019) Changes in marine phytoplankton diversity: assessment under the Marine Strategy Framework Directive. Ecol Indic 102:265–277. https://doi.org/10.1016/j.ecolind.2019.02.009

  • Sabetta L, Basset A, Spezie G (2008) Marine phytoplankton size–frequency distributions: spatial patterns and decoding mechanisms. Estuar Coast Shelf Sci 80:181–192. https://doi.org/10.1016/j.ecss.2008.07.021

  • Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 8:469–484. https://doi.org/10.1890/08-2225.1

  • Séguin A, Harvey E, Archambault P, Nozais C, Grave D (2014) Body size as a predictor of species loss effect on ecosystem functioning. Sci Rep 4:4616. https://doi.org/10.1038/srep04616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517. https://doi.org/10.1046/j.1461-0248.2003.00454.x

  • Steudel B, Hallmann C, Lorenz M, Abrahamczyk S, Prinz K, Herrfurth C, Feussner J, Martini JWR, Kessler M (2016) Contrasting biodiversity–ecosystem functioning relationships in phylogenetic and functional diversity. New Phytol 212:409–420. https://doi.org/10.1111/nph.14054

  • Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–542. https://doi.org/10.1038/nature12529

  • Sugie K, Suzuki K (2015) Size of dominant diatom species can alter their evenness. PLoS ONE 10(6):e0131454. https://doi.org/10.1371/journal.pone.0131454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 11:1331–1346. https://doi.org/10.1093/plankt/fbg096

  • Taucher J, Jones J, James A, Brzezinski MA, Carlson CA, Riebesell U, Passow U (2015) Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus. Limnol Oceanogr 60:901–919. https://doi.org/10.1002/lno.10063

  • Vallina SM, Cermeno P, Dutkiewicz S, Loreau M, Montoya JM (2017) Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol Model 361:184–196. https://doi.org/10.1016/j.ecolmodel.2017.06.020

  • Villéger S, Miranda JR, Hernandez DF, Mouillot D (2012) Low functional β-diversity despite high taxonomic β-diversity among tropical estuarine fish communities. PLoS One 7(7):e40679. https://doi.org/10.1371/journal.pone.0040679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113. https://doi.org/10.1007/s100219900062

  • Weithoff G, Beisner BE (2019) Measures and approaches in trait-based phytoplankton community ecology – from freshwater to marine ecosystems. Front Mar Sci 6:40. https://doi.org/10.3389/fmars.2019.00040

    Article  Google Scholar 

  • Weithoff G, Walz N, Gaedke U (2001) The intermediate disturbance hypothesis—species diversity or functional diversity? J Plankton Res 23:1147–1155. https://doi.org/10.1093/plankt/23.10.1147

  • Weithoff G, Rocha MR, Gaedke U (2015) Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure. Freshw Biol 60:758–767. https://doi.org/10.1111/fwb.12527

  • White P, Enquist BJ, Green JL (2008) On estimating the exponent of power-law frequency distributions. Ecology 89:905–912. https://doi.org/10.1890/07-1288.1

Download references

Acknowledgments

This work was undertaken within the framework of the project STRATEGY from the Eurropean Community under contract EVK3-CT-2001-0004609; 2001-09/2004. The financial support by the EC is acknowledged. I would like to thank the two anonymous reviewers for their careful reading of this manuscript and their many insightful comments and suggestions towards improving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Ignatiades.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

No use of animals was undertaken in this investigation.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained from the competent authorities.

Data availability

The phytoplankton species data set used in this analysis are recorded in the MedOBIS database (http://ipt.medobis.eu/resource?r=strategy).

Additional information

Communicated by H. Hillebrand

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was undertaken within the framework of the project STRATEGY from the European Community under contract EVK3-CT-2001-0004609; 2001-09/2004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatiades, L. Taxonomic diversity, size-functional diversity, and species dominance interrelations in phytoplankton communities: a critical analysis of data interpretation. Mar. Biodivers. 50, 58 (2020). https://doi.org/10.1007/s12526-020-01086-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01086-4

Keywords

Navigation