Skip to main content

Advertisement

Log in

Phylogenetic characterization of marine microbial biofilms associated with mammal bones in temperate and polar areas

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Mammal bones sustain rich chemoautotrophic microbial communities that are consumed by a range of marine invertebrates, with bacteria playing a fundamental role making the organic matter retained in the bones available to other organisms. Our major aim here is to characterize the phylogenetic diversity of bacteria associated with Mediterranean shallow-water bones (whale, pig, and cow) examined at two different times after colonization, and compare it to bacterial communities developing on whale bones in the Southern Ocean. We sequenced 16S amplicons for approximately 50 clones from each of the 5 bone samples studied here, resulting in 215 OTUs. Our preliminary microbial community analysis resulted into two groups. Cluster 1 with cow and whale bones from the Mediterranean (3 months) and whale bones from the Southern Ocean (1 year), characterized by abundant Epsilon-proteobacteria, usually the first colonizers in anaerobic environments. Cluster 2 with Mediterranean cow (9 months) and pig bones (12 months), characterized by abundant Thiotrichales. Among the Thiotrichales, two different species of Beggiatoa spp. appeared in two different bones in the Mediterranean samples, indicating that Beggiatoa spp. can occur in the same area. Our work confirms that microbial mats associated with mammal bones in the shallow waters of the Mediterranean and the Southern Ocean are highly diverse with a predominance of Gamma- and Epsilon-proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Barry JP, Nelson DC (1999) Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl Environ Microbiol 65:270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alazard D, Dukan S, Urios A, Verhé F, Bouabida N, Morel F, Thomas P, Garcia J-L, Ollivier B (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett BA, Smith CR, Glaser B, Maybaum HL (1994) Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Mar Ecol Prog Ser 108:205–223

    Article  Google Scholar 

  • Braby CE, Rouse GW, Johnson SB, Jones WJ, Vrijenhoek RC (2007) Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whale-falls in Monterey Bay, California. Deep Sea Res I: Oceanogr Res Pap 54:1773–1791

    Article  Google Scholar 

  • Buck KR, Barry JP, Hallam SJ (2013) Thioploca spp. sheaths as niches for bacterial and protistan assemblages. Mar Ecol 35:395–400

    Article  Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4(6):458

    Article  CAS  PubMed  Google Scholar 

  • Cavalett A, Castro da Silva MA, Toyofuku T, Mendes R, Gouvêa Taketani R, Pedrini J, Cardoso de Freitas R et al (2017) Dominance of Epsilon-proteobacteria associated with a whale fall at a 4204 m depth–South Atlantic Ocean. Deep-Sea Res II Top Stud Oceanogr 146(2017):53–58

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: UserManual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Deming JW, Reysenbach AL, Macko SA, Smith CR (1997) Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone-colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech 37:162–170

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al (2010) Geneious v5.5. http://www.geneious.com

  • Fagervold SK, Galand PE, Zbinden M, Gaill F, Lebaron P, Palacios C (2012) Sunken woods on the ocean floor provide diverse specialized habitats for microorganisms. FEMS Microbiol Ecol 82:616–628

    Article  CAS  PubMed  Google Scholar 

  • Fujikura K, Fujiwara Y, Kawato M (2006) A new species of Osedax (Annelida: Siboglinidae) associated with whale carcasses off Kyushu, Japan. Zool Sci 23:733–740

    Article  Google Scholar 

  • Glover AG, Källström B, Smith CR, Dahlgren TG (2005) World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proc R Soc Lond B Biol Sci 272:2587–2592

    Google Scholar 

  • Glover AG, Wiklund H, Taboada S, Avila C, Cristobo J, Smith CR, Kemp KM, Jamieson AJ, Dahlgren TG (2013) Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor. Proc R Soc Lond B Biol Sci 280:20131390

  • Goffredi SK, Orphan VJ (2010) Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ Microbiol 12:344–363

    Article  CAS  PubMed  Google Scholar 

  • Goffredi SK, Paull CK, Fulton-Bennett K, Hurtado LA, Vrijenhoek RC (2004) Unusual benthic fauna associated with a whale fall in Monterey Canyon, California. Deep Sea Res I: Oceanogr Res Pap 51:1295–1306

    Article  Google Scholar 

  • Goffredi SK, Orphan VJ, Rouse GW, Jahnke L, Embaye T et al (2005) Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 7:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Goffredi SK, Johnson SB, Vrijenhoek RC (2007) Genetic diversity and potential function of microbial symbionts associated with newly discovered species of Osedax polychaete worms. Appl Environ Microbiol 73:2314–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffredi SK, Wilpiszeski R, Lee R, Orphan VJ (2008) Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J 2:204–220

    Article  CAS  PubMed  Google Scholar 

  • Goffredi SK, Yi H, Zhang Q, Klann JE, Struve IA, Vrijenhoek RC, Brown CT (2014) Genomic versatility and functional variation between two dominant heterotrophic symbionts of deep-sea Osedax worms. ISME J 8:908–924

    Article  PubMed  Google Scholar 

  • Grünke S, Lichtschlag A, De Beer D, Kuypers M, Lösekann-Behrens T, Ramette A, Boetius A (2010) Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats. ISME J 4(8):1031

    Article  PubMed  Google Scholar 

  • Hagen KD, Nelson DC (1996) Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl Environ Microbiol 62:947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmer M, Kristensen E (1992) Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar Ecol Prog Ser 80:191–201

    Article  CAS  Google Scholar 

  • Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166(3):160–168

  • Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa spp.) at a hydrothermal deep-sea vent site. Nature 342:834–836

    Article  CAS  Google Scholar 

  • Jørgensen BB, Gallardo VA (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28(4):301–313

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khelaifia S, Fardeau ML, Pradel N, Aussignargues C, Garel M, Tamburini C, Cayol J-L, Gaudron S, Gaill F, Ollivier B (2011) Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61:2706–2711

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Fukui M (2003) Phylogenetic analysis of Beggiatoa spp. from organic rich sediment of Tokyo Bay, Japan. Water Res 37:3216–3223

    Article  CAS  PubMed  Google Scholar 

  • Liesack W, Finster K (1994) Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758

    Article  Google Scholar 

  • Maier S, Gallardo VA (1984) Thioploca araucae sp. nov. and Thioploca chileae sp. nov. Int J Syst Bacteriol 34:414–418

    Article  Google Scholar 

  • Muβmann M, Schulz HN, Strotmann B, Kjaer T, Nielsen LP, Rossello-Mora RA, Amann RI, Jørgensen BB (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5:523–533

    Article  Google Scholar 

  • Nelson DC, Jørgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50(3):447–462

    Article  CAS  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2006) FigTree v1.3.1. http://tree.bio.ed.ac.uk/software/figtree

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668–671

    Article  CAS  PubMed  Google Scholar 

  • Rouse GW, Worsaae K, Johnson SB, Jones WJ, Vrijenhoek RC (2008) Acquisition of dwarf male “harems” by recently settled females of Osedax roseus n. sp. (Siboglinidae; Annelida). Biol Bull 214(1):67–82

    Article  CAS  PubMed  Google Scholar 

  • Rouse GW, Wilson NG, Goffredi SK, Johnson SB, Smart T, Widmer C, Young CM, Vrijenhoek RC (2009) Spawning and development in Osedax boneworms (Siboglinidae, Annelida). Mar Biol 156(3):395–405

    Article  Google Scholar 

  • Rouse GW, Goffredi SK, Johnson SB, Vrijenhoek RC (2011) Not whale-fall specialists, Osedax worms also consume fishbones. Biol Lett 7:736–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouse GW, Wilson NG, Worsaae K, Vrijenhoek RC (2015) A dwarf male reversal in bone-eating worms. Curr Biol 25:236–241

    Article  CAS  PubMed  Google Scholar 

  • Salathé RM, Vrijenhoek RC (2012) Temporal variation and lack of host specificity among bacterial endosymbionts of Osedax bone worms (Polychaeta: Siboglinidae). BMC Evol Biol 12:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelmann TG, Hernandez Mariné M, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  CAS  PubMed  Google Scholar 

  • Schwartz E, Friedrich B (2006) The H 2-metabolizing prokaryotes. The Prokaryotes Vol 2: Ecophysiology and Biochemistry, pp. 496-563

  • Smith CR (2006) Bigger is better. In: Estes JA (ed) Whales, whaling, and ocean ecosystems. Univ California Press, pp 286-300

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol Annu Rev 41:311–354

    Google Scholar 

  • Smith CR, Kukert H, Wheatcroft RA, Jumars PA, Deming JW (1989) Vent fauna on whale remains. Nature 341:27–28

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A fast bootstrapping algorithm for the RAxML web-servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Taboada S, Wiklund H, Glover AG, Dahlgren TG, Cristobo J, Avila C (2013) Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biol 36:1031–1045

    Article  Google Scholar 

  • Taboada S, Riesgo A, Bas M, Arnedo MA, Cristobo J, Rouse GW, Avila C (2015) Bone-Eating Worms Spread: Insights into Shallow-Water Osedax (Annelida, Siboglinidae) from Antarctic, Subantarctic, and Mediterranean Waters. PLoS ONE 10

  • Taboada S, Bas M, Garriga M, Leiva C, Sardà R, Avila C (2016) Life after death: Shallow-water polychaete communities associated to mammal bones in the Mediterranean Sea. Mar Ecol 37:164–178

  • Teske A, Nelson DC (2006) The genera Beggiatoa and Thioploca. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, USA, pp 784–810

    Chapter  Google Scholar 

  • Teske A, Sogin ML, Nielsen LP, Jannasch HW (1999) Phylogenetic relationships of a large marine Beggiatoa. Syst Appl Microbiol 22:39–44

    Article  CAS  PubMed  Google Scholar 

  • Tresguerres M, Katz S, Rouse GW (2013) How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms. Proc R Soc Lond B Biol Sci 280(1761):20130625

    Google Scholar 

  • Treude T, Smith CR, Wenzhöfer F, Carney E, Bernardino AF, Hannides AK, Krüger M, Boetius A (2009) Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Mar Ecol Prog Ser 382:1–21

    Article  CAS  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    Article  CAS  PubMed  Google Scholar 

  • Verna C, Ramette A, Wiklund H, Dahlgren T, Glover A, Gaill F, Dubilier N (2010) High symbiont diversity in the bone-eating worm Osedax mucofloris from shallow whale-falls in the North Atlantic. Environ Microbiol 12:2355–2370

    Article  CAS  PubMed  Google Scholar 

  • Vrijenhoek RC, Johnson SB, Rouse GW (2009) A remarkable diversity of bone-eating worms (Osedax, Siboglinidae; Annelida). BMC Biol 7:1–13

    Article  CAS  Google Scholar 

  • Weston DP (1990) Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar Ecol Prog Ser 61:233–244

    Article  Google Scholar 

  • Wiklund H, Glover AG, Dahlgren TG (2009) Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in the North-East Atlantic. Zootaxa 2228:43–56

    Article  Google Scholar 

  • Wiklund H, Altamira IV, Glover AG, Smith CR, Baco AR, Dahlgren T (2012) Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deepsea whale-fall and wood-fall habitats in the north-east Pacific. Syst Biodivers 10:243–259

    Article  Google Scholar 

  • Worsaae K, Rouse GW (2010) The simplicity of males: dwarf males of four species of Osedax (Siboglinidae; Annelida) investigated by confocal laser scanning microscopy. J Morphol 271(2):127–142

    Article  PubMed  Google Scholar 

  • Zhang CL, Huang Z, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Special thanks are given to L. Laria (CEPESMA) who provided some fresh whale vertebrae, as well as R. de Stephanis, P. Gauffier, J. Giménez, E. Fernández, and the institutions EBD-CSIC, CIRCE, and Junta de Andalucía who kindly provided some fresh whale vertebrae for our experiments. We also thank the Gabriel de Castilla Spanish Antarctic Base crews of the 2011-12 and 2012-13 seasons, for their help during deployment and recovery of the experiments. We are more than grateful to our colleagues who helped during the experiment preparation, the whale bone collection, and analysis of samples: O. Moreno, J. Cristobo, M. Ballesteros, M. Correa, J. Mora, B. Figuerola, C. Angulo-Preckler, J. Moles, L. Toll, L. Núñez-Pons, M. Garriga, C. Leiva, G. Carreras, M. Romero, C. Tidu, C. Campillo-Campbell, E. Bordallo, H. Salvadó, and members of the Mola Mola Diving Center. Three anonymous reviewers greatly improved an early version of the manuscript. Collection of microbial mats in Antarctica was done under the permit CPE-EIA-2011-7 issued by the Ministry of Science and Innovation of Spain. This work is part of the AntEco (State of the Antarctic Ecosystem) scientific research programme of SCAR.

Funding

This work was developed in the frame of the Systematics Research Fund 2013 grant to MB (Linnean Society of London and the Systematics Association), ACTIQUIM-II and ACTIQUIMWHALES research grants to CA (CTM2008-03135-E/ANT, CTM2010-17415/ANT; Spanish Government), and the Obra Social La Caixa research grant (CONV09002) to the environmental association S’Agulla Educació Mediambiental (ST and AR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Taboada.

Ethics declarations

Conflict Of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements.

Data availability

Genetic sequence data generated in this study were deposited in GenBank with Accession Numbers MN566614–MN566757. All other data generated or analyzed during this study are included in this published article and its supplementary information files.

Author contribution

ST and MB conceived and designed research. ST and MB conducted experiments. AR and CA contributed with reagents and analytical tools. ST, MB and AR analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Additional information

Communicated by A. J. Gooday

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taboada, S., Bas, M., Avila, C. et al. Phylogenetic characterization of marine microbial biofilms associated with mammal bones in temperate and polar areas. Mar. Biodivers. 50, 60 (2020). https://doi.org/10.1007/s12526-020-01082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01082-8

Keywords

Navigation