Skip to main content

Description and distribution of Desmacella hyalina sp. nov. (Porifera, Desmacellidae), a new cryptic demosponge in glass sponge reefs from the western coast of Canada

Abstract

Glass sponges (Porifera, Hexactinellida) form globally unique reefs that support deep-sea biodiversity in the Canadian northeast Pacific. In February 2017, the largest known reefs were protected within the Hecate Strait and Queen Charlotte Sound Glass Sponge Reefs Marine Protected Area (HSQCS-MPA). Many studies that have established baseline biodiversity data for the MPA have focused on describing the crustaceans and fish living in the reefs, but the relationship between glass sponges and sponge epibionts has often been overlooked. We studied one of the more conspicuous sponge epibionts of the genus Desmacella Schmidt, 1870, a demosponge that encrusts the surface of reef-forming glass sponges. Using a remotely operated vehicle, samples of an encrusting sponge with three color morphotypes (yellow, white, and mauve) were collected from the northern reef complex of the HSQCS-MPA. Spicule and DNA analyses of COI sequences revealed the white morphotype to be distinct from the previously described species, D. austini Lehnert, Conway, Barrie & Krautter, 2005. Comparisons with other Desmacella samples collected from other regions in British Columbia waters since 1976 confirmed this to be a new species, which we describe here as Desmacella hyalina sp. nov. We also mapped the spatial distribution of the color morphotypes on the reefs and found that Desmacella spp. formed nearly 20% of live sponge cover at some sampling sites indicating its potential importance in the reefs. Our results expand on knowledge of the diversity of sponge epibionts in glass sponge reefs and highlight the importance of understanding cryptic species diversity especially for future monitoring in marine protected areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Agardy T, Bridgewater P, Crosby MP, Day J, Dayton PK, Kenchington R, Laffoley D, McConney P, Murray PA, Parks JE, Peau L (2003) Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquat Conserv 13:353–367

    Article  Google Scholar 

  • Austin WC, Conway KW, Barrie JV, Krautter M (2007) Growth and morphology of a reef-forming glass sponge, Aphrocallistes vastus (Hexactinellida), and implications for recovery from widespread trawl damage. In: Custodio M, Lobo-Hadju G, Lobo-Hadju E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability, vol 28. Museu Nacional, Rio de Janeiro, pp 139–145

    Google Scholar 

  • Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarct Sci 4:137–150

    Article  Google Scholar 

  • Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS (2013) Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol 19:2613–2624

    PubMed  Article  Google Scholar 

  • Benedict JE (1902) Descriptions of a new genus and forty-six new species of crustaceans of the family Galatheidae with a list of the known marine species. Proc US Natl Mus 26:243–334

    Article  Google Scholar 

  • Bergquist PR, Fromont PJ (1988) The marine fauna of New Zealand: Porifera, Demospongiae, part 4 (Poecilosclerida). NZ Oceanogr Inst Mem 96:1–197

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    PubMed  Article  Google Scholar 

  • Bivand RS, Wong DWS (2018) Comparing implementations of global and local indicators of spatial association. TEST 27:716–748

    Article  Google Scholar 

  • Bowerbank JS (1862) On the anatomy and physiology of the Spongiadae. Part III on the generic characters, the specific characters, and on the method of examination. Phil Trans R Soc Lond Ser B Biol 152:1087–1135, pls LXXII-LXXIV

  • Bowerbank JS (1866) A monograph of the British Spongiadae, vol 2. Ray Society, London, pp 1–388

  • Brandt JF (1851) Krebse. In: von Middendorff AT (ed) Reise in den äussersten Norden und Osten Sibiriens während der Jahre 1843 und 1844 mit allerhöchster Genehmigung auf Veranstaltung der Kaiserlichen Akademie der Wissenschaften zu St. Petersburg ausgeführt und in Verbinding mit vielen Gelehrten herausgegeben, vol 2 (Theil 1). St. Petersburg, pp 77-148, Plates 145–146

  • Brooks TM, Gustavo ABF, Ana SLR (2004) Protected areas and species. Conserv Biol 18:616–618

    Article  Google Scholar 

  • Burton M (1930) Norwegian sponges from the Norman Collection. Proc Zool Soc London 1930:487–546

    Article  Google Scholar 

  • Burton M (1932) Sponges. Discov Rep 6:237–392

    Article  Google Scholar 

  • Cavalcanti T, Santos GG, Pinheiro U (2015) Desmacella Schmidt, 1870 from Brazil: description of two new species and a review of records (Desmacellida: Demospongiae: Porifera). Zootaxa 4034:364–374

    PubMed  Article  Google Scholar 

  • Chape S, Harrison J, Spalding M, Lysenko I (2005) Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Phil Trans R Soc Lond Ser B Biol Sci 360:443–455

  • Chu JWF, Leys SP (2010) High resolution mapping of community structure in three glass sponge reefs (Porifera, Hexactinellida). Mar Ecol Prog Ser 417:97–113

    Article  Google Scholar 

  • Chu JWF, Leys SP (2012) The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri as predators of glass sponges. Invertebr Biol 131:75–81

    Article  Google Scholar 

  • Conway KW (1999) Hexactinellid sponge reefs on the British Columbia continental shelf: geological and biological structure with a perspective on their role in the shelf ecosystem. Fisheries and Oceans Canada Canadian Stock Assessment Secretariat Research Document 99/192

  • Conway KW, Barrie JV, Austin WC, Luternauer JL (1991) Holocene sponge bioherms on the western Canadian continental shelf. Cont Shelf Res 11:771–790

    Article  Google Scholar 

  • Conway KW, Barrie JV, Krautter M (2005) Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry. Geo-Mar Lett 25:205–213

    CAS  Article  Google Scholar 

  • Cook SE (2005) Ecology of the hexactinellid sponge reefs on the western Canadian continental shelf. MSc Thesis, University of Victoria

  • Cook SE, Conway KW, Burd B (2008) Status of the glass sponge reefs in the Georgia Basin. Mar Environ Res 66:S80–S86

    CAS  PubMed  Article  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antartica. Ecol Monogr 44:105–128

    Article  Google Scholar 

  • de Laubenfels M (1936) A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in general, with material for a revision of the families and orders of the Porifera. Carnegie Inst Wash Publ 467:1–225

    Google Scholar 

  • de Laubenfels M (1954) The sponges of the west-central Pacific. Oreg State Monogr 7:i-x:1–306, pls I-XII

  • Du Preez C, Tunnicliffe V (2011) Shortspine thornyhead and rockfish (Scorpaenidae) distribution in response to substratum, biogenic structures and trawling. Mar Ecol Prog Ser 425:217–231

    Article  Google Scholar 

  • Duchassaing de Fonbressin P, Michelotti G (1864) Spongiaires de la mer Caraibe. Natuurkundige verhandelingen van de Hollandsche maatschappij der wetenschappen te Haarlem. 21(2):1–124, pls I-XXV

  • Dunham A, Archer SK, Davies SC, Burke LA, Mossman J, Pegg JR, Archer E (2018) Assessing condition and ecological role of deep-water biogenic habitats: glass sponge reefs in the Salish Sea 141:88–99

  • Ferrer-Hernández F (1914) Esponjas del Cantábrico. Parte 2: III. Myxospongida. IV. Tetraxonida. V. Triaxonida. Mus Nacion Cienc Nat Madrid Zool 17:1–46

  • Fisheries and Oceans Canada (2017) Hecate Strait and Queen Charlotte Sound Glass Sponge Reefs Marine Protected Areas Regulations. SOR/2017–15 vol 151

  • Giradoux P (2018) Pgirmess: spatial analysis and data mining for field ecologists. R Package version 1.6.9. https://cran.r-project.org/package=pgirmess

  • Göcke C, Janussen D (2013) Demospongiae of ANT XXIV/2 (SYSTCO I) expedition—Antarctic eastern Weddell Sea. Zootaxa. 3692:28–101

    Article  Google Scholar 

  • González-Rivero M, Yakob L, Mumby PJ (2011) The role of sponge competition on coral reef alternative steady states. Ecol Model 222:1847–1853

    Article  Google Scholar 

  • Grant RE (1841) Porifera. In: Bailliere H (ed) Outlines of comparative anatomy 1. London, pp 5–9 310–313, pls II-IV

  • Guillas KC, Kahn AS, Grant N, Archer SK, Dunham A, Leys SP (2019) Settlement of juvenile glass sponges and other invertebrate cryptofauna on the Hecate Strait glass sponge reefs. Invertebr Biol 138:e12266

    Article  Google Scholar 

  • Heck N, Dearden P, McDonald AT (2012) Insights into marine conservation efforts in temperate regions: marine protected areas on Canada’s West Coast. Ocean Coast Manag 57:10–20

    Article  Google Scholar 

  • Hentschel E (1911) Tetraxonida. Teil 2 Die Fauna Südwest-Australiens. In: Michaelsen W, Hartmeyer R (eds) Ergebnisse der Hamburger südwest-australischen Forschungsreise 1905, vol 3. Fischer, Jena, pp 279–393

    Google Scholar 

  • Higgin T (1877) Description of some sponges obtained during a cruise of the steam-yacht ‘Argo’ in the Caribbean and neighbouring seas. Ann Mag Nat Hist 4:291–299 pl. XIV

    Article  Google Scholar 

  • Hogg MM, Tendal OS, Conway KW, Pomponi SA, Van Soest RWM, Gutt J, Krautter M, Roberts JM (2010) Deep-sea sponge grounds: reservoirs of biodiversity. UNEP-WCMC Biodiversity Series No 32

  • Hooper JNA (1984) Sigmaxinella soelae and Desmacella ithystela: two new desmacellid sponges (Porifera, Axinellida, Desmacellidae) from the Northwest Shelf of Western Australia, with a revision of the family Desmacellidae. Monogr Ser N Terr Mus Arts Sci 2:1–58

  • Jamieson GS, Chew L (2002) Hexactinellid sponge reefs: areas of interest as marine protected areas in the north and central coast areas. Canadian Science Advisory Secretariat, Department of Fisheries and Oceans, Canada. 1-78

  • Kahn AS, Vehring LJ, Brown RR, Leys SP (2016) Dynamic change, recruitment and resilience in reef-forming glass sponges. J Mar Biol Assoc UK 96:429–436

    Article  Google Scholar 

  • Krautter M, Conway KW, Barrie JV (2006) Recent hexactinosidan sponge reefs (silicate mounds) off British Columbia, Canada: Frame-building processes. J Paleontol 80:38–48

    Article  Google Scholar 

  • Krautter M, Conway KW, Barrie JV, Neuweiller M (2001) Discovery of a “Living Dinosaur”: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies 44:265–282

    Article  Google Scholar 

  • Lamarck J-Bd (1815) Suite des polypiers empâtés. Mém Mus Hist nat Paris. 1:69–80, 162–168, 331–340

  • Lambe LM (1893) On some sponges from the Pacific coast of Canada and Behring Sea. Proc Trans R Soc 11:25–43

  • Law L (2018) Distribution, biodiversity, and function of glass sponge reefs in the Hecate Strait, British Columbia, Canada. MSc Thesis, University of Alberta

  • Lehnert H, Conway KW, Barrie JV, Krautter M (2005) Desmacella austini sp. nov. from sponge reefs off the Pacific coast of Canada. Contrib Zool 74:265–270

    Article  Google Scholar 

  • Lévi C (1960) Spongiaires des côtes occidentales africaines. Bull tl FAN”. 22:743–769

  • Lévi C (1964) Spongiaires des zones bathyle, abyssale et hadale. Galathea report scientific results of the Danish Deep-Sea Expedition Round the World 1950–52. 7:63–112

  • Lévi C (1993) Porifera Demospongiae: Bathyal sponges from New Caledonia, collected by the ‘Jean Charcot’ BIOCAL campaign, 1985. Mém Mus Natn Hist Nat 158:9–87

  • Leys SP, Lauzon RJN (1998) The ecology of a deep sea sponge: growth and seasonality in Rhabdocalyptus dawsoni. J Exp Mar Biol Ecol 230:111–129

    Article  Google Scholar 

  • Leys SP, Mackie GO, Reiswig H (2007) The biology of glass sponges. Adv Mar Biol 52:1–145

    CAS  PubMed  Article  Google Scholar 

  • Leys SP, Wilson K, Holeton C, Reiswig HM, Austin WC, Tunnicliffe V (2004) Patterns of glass sponge (Porifera, Hexactinellida) distribution in coastal waters of British Columbia, Canada. Mar Ecol Prog Ser 283:133–149

  • Li J (1986) Sponges as marine fouling organisms in China waters. I Stud Mar Sin 26:76–116

    Google Scholar 

  • McLean EL, Lasker HR (2013) Height matters: position above the substratum influences the growth of two demosponge species. Mar Ecol 34:122–129

  • Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125

    PubMed  Article  Google Scholar 

  • Morrow C, Cárdenas P (2015) Proposal for a revised classification of the Demospongiae (Porifera). Front Zool 12:7

    PubMed  PubMed Central  Article  Google Scholar 

  • Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225:1478–1480

    CAS  PubMed  Article  Google Scholar 

  • Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    CAS  Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.r-project.org/

  • Randall JE, Hartman WD (1968) Sponge-feeding fishes of the West Indies. Mar Biol 1:216–225

    Article  Google Scholar 

  • Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591

    Article  Google Scholar 

  • Reveillaud J, Remerie T, van Soest R, Erpenbeck D, Cárdenas P, Derycke S, Xavier JR, Rigaux A, Vanreusel A (2010) Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae). Mol Phylogenet Evol 56:104–114

    PubMed  Article  Google Scholar 

  • Ribeiro PJ, Diggle PJ (2001) GeoR: a package for geostatistical analysis. R-news 1:15–18

    Google Scholar 

  • Ridley SO, Dendy A (1886) Preliminary report on the Monaxonida collected by H.M.S. ‘Challenger’. J Nat Hist 5:325–351

    Google Scholar 

  • Rützler K (1970) Spatial competition among Porifera: solution by epizoism. Oecologia. 5:85–95

  • Sanchez E, Gallery R, Dalling JW (2009) Importance of nurse logs as a substrate for the regeneration of pioneer tree species on Barro Colorado Island, Panama. J Trop Ecol 25:429–437

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    CAS  PubMed  Article  Google Scholar 

  • Schmidt O (1870) Grundzüge einer Spongien-fauna des Atlantischen Gebietes. iii-iv, 1-88, pls I-VI. Engelmann, Leipzig

  • Schmidt PJ (1904) Fishes of the eastern seas of the Russian Empire vol i-xi. Scientific results of the Korea--Sakhalin Expedition of the Emperor Russian Geographical Society 1900-1901, 1–466. St. Petersburg

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Schulze FE (1886) Über den Bau und das System der Hexactinelliden. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (Physikalisch-Mathematisch Classe).1-97

  • Sollas I (1902) On the sponges collected during the “Skeat Expedition” to the Malay Peninsula 1899-1900. Proc Zool Soc London 2:210–220

    Article  Google Scholar 

  • Sollas WJ (1885) A classification of sponges. J Nat Hist 16:395

    Google Scholar 

  • Stephens J (1916) Preliminary notice of some Irish sponges. The Monaxonellida (suborder Sigmatomonaxonellida) obtained by the fisheries branch of the Department of Agriculture and Technical Instruction, Ireland. Ann Mag Nat Hist 8:17–99

    Google Scholar 

  • Stone RP, Conway KW, Csepp DJ, Barrie JV (2014) The boundary reefs: glass sponge (Porifera: Hexactinellidae) reefs on the international border between Canada and the United States. NOAA Tech Memo NMFS-AFSC 264

  • Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142:643–648

    CAS  Article  Google Scholar 

  • Topsent E (1890) Preliminary notice on the sponges collected during the Hirondelle campaigns. Bull Zool Soc France 15:26–32 65–71

    Google Scholar 

  • Vacelet J, Boury-Esnault N (1995) Carnivorous sponges. Nature. 373:333–335

    CAS  Article  Google Scholar 

  • Vacelet J, Boury-Esnault N, Harmelin J (1994) Hexactinellid cave, a unique deep-sea habitat in the scuba zone. Deep-Sea Res I Oceanogr Res Pap 41:965–973

  • Van Soest RWM (1984) Marine sponges from Curaçao and other Caribbean localities. Part III. Poecilosclerida. In: Hummelinck P, Van der Steen L (eds) Uitgaven van de Natuurwetenschappelijke Studiekring voor Suriname en de Nederlandse Antillen. No. 112, vol 66. Studies on the Fauna of Curaçao and other Caribbean Islands, pp 1–167

  • World Porifera Database (2020) http://www.marinespecies.org/porifera. Accessed 2020-03-07

  • Verrill AE (1907) The Bermuda Islands: part V. An account of the coral reefs (characteristic life of the Bermuda coral reefs). Trans Connecticut Acad Arts Sci 12:330–344

    Google Scholar 

  • Vosmaer GCJ (1885) The sponges of the “Willem Barents” expedition 1880 and 1881. Bijdragen tot de Dierkunde 12:1–47

  • Wheeler QD (1995) Systematics, the scientific basis for inventories of biodiversity. Biodivers Conserv 4:476–489

    Article  Google Scholar 

  • Wiedenmayer F (1977) Shallow-water sponges of the western Bahamas. Experientia Suppl 28:1–287

    Google Scholar 

  • Wilcox T, Hill M, DeMeo K (2002) Observations on a new two-sponge symbiosis from the Florida Keys. Coral Reefs 21:198–204

    Article  Google Scholar 

  • Wilson HV (1904) Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U.S. Fish Commission Steamer ‘Albatross’ during 1891. Mem Mus Comp Zool Harvard Coll 30:1–164

  • Wulff JL (2008) Collaboration among sponge species increases sponge diversity and abundance in a seagrass meadow. Mar Ecol 29:193–204

    Article  Google Scholar 

  • Zea S, van Soest RWM (1986) Three new species of sponges from the Colombian Caribbean. Bull Mar Sci 38:355–365

    Google Scholar 

Download references

Acknowledgments

We thank the Captain and crew of the CCGS John P. Tully and the ROV ROPOS team for their invaluable help with underwater surveys and sampling. We thank E. Matveev, N. Grant, C. Pennelly, M. Theiss, S. Archer, and A. Dunham for assistance with fieldwork, S. Dang and C. Davis (University of Alberta Molecular Biology Service Unit) for help with DNA extraction and molecular analyses, and N. Gerein (EAS Scanning Electron Microscopy Laboratory) for assistance with electron microscopy. We thank the reviewers for their helpful comments, which have greatly improved the manuscript.

Funding

This study was financially supported by the following: NSERC Canadian Healthy Oceans Network (CHONeII) and its partners: Department of Fisheries and Oceans Canada and INREST (representing the Port of Sept-Îles and City of Sept-Îles) (NETGP 468437-14, CHONe Project 2.2.3); Fisheries and Oceans Ship Time and National Conservation Plan to A.D., Fisheries and Oceans Academic Research Contribution Plan to S.P.L., and NSERC Discovery and Ship Time to S.P.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally P. Leys.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Field studies and sampling

Sampling was carried out with collection permits XR 197, 237, 228, 230, and 164 from 2012 to 2018 to S.P.L.

Data availability

The sequence data generated during this analysis have been deposited in GenBank and are listed in Table 5 and are available at the University of Alberta Education and Research Archive (ERA): doi.org/10.7939/r3-awh0-7967. Samples of specimens have been deposited with the Royal British Columbia Museum. Accession numbers for DNA and samples are provided in Table 5 and are available at the University of Alberta Education and Research Archive: doi.org/10.7939/r3-awh0-7967.

Author contributions

L.K.L. and S.P.L. conceived and designed the research. B.S.O. and N.M. collected additional specimens; H.M.R. carried out spicule analysis. K.C.G. conducted spatial analysis. A.S.K. assisted with field collections. C.D. carried out gene analysis and data management. L.K.L. and S.P.L. wrote the manuscript. All authors read and approved the manuscript.

Additional information

Communicated by M. Klautau

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is registered in ZooBank under http://zoobank.org/6FF2C13A-B20C-4350-BA44-256A35BB1FB8

Electronic supplementary material

ESM 1

(PDF 336 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Law, L.K., Reiswig, H.M., Ott, B.S. et al. Description and distribution of Desmacella hyalina sp. nov. (Porifera, Desmacellidae), a new cryptic demosponge in glass sponge reefs from the western coast of Canada. Mar. Biodivers. 50, 55 (2020). https://doi.org/10.1007/s12526-020-01076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01076-6

Keywords

  • Glass sponges
  • Porifera
  • Cryptic diversity
  • Marine protected areas
  • Desmacella
  • Epibionts
  • Hecate Strait and Queen Charlotte Sound
  • Hexactinellida