Intertidal assemblages across boulders and rocky platforms: a multi-scaled approach in a subtropical island

Abstract

Rocky intertidal communities have proved to be tractable systems for experimental ecology, contributing much to our general understanding of population and community ecology. Physical environmental factors are usually considered strong structuring elements for these assemblages. In this study, we adopted a mixed model sampling design to study the effects of substratum type and shore orientation (i.e. different wave exposure) on intertidal assemblages of Madeira Island (NE Atlantic) across time. We included both macrofauna and macroalgae and compare their abundance and distribution in boulders and rocky platforms on north and south coasts of the island. Generally, assemblages moderately differed between boulders and rocky platforms whereas orientation had little influence on the distribution of most taxa. A high variability was observed across a range of spatial and temporal scales, suggesting that interactions of both physical variables and biological parameters may be influencing distribution of intertidal organisms. The results obtained provide pioneer quantitative data on intertidal assemblages of Madeira.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance

  2. Anderson MJ (2014) Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat Ref Online:1–15

  3. Arrontes J (1999) On the evolution of interactions between marine mesoherbivores and algae. Bot Mar 42:137e155

    Google Scholar 

  4. Benedetti-Cecchi L, Acunto S, Bulleri F, Cinelli F (2000) Population ecology of the barnacle Chthamalus stellatus in the Northwest Mediterranean. Mar Ecol Prog Ser 198:157–170

    Google Scholar 

  5. Benedetti-Cecchi L, Pannacciulli F, Bulleri F, Moschella PS, Airoldi L, Relini G, Cinelli F (2001) Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Mar Ecol Prog Ser 214:137–150

    Google Scholar 

  6. Benedetti-Cecchi L, Iacopo B, Micheli F, Maggi E, Fosella T, Vaselli S (2003) Implications of spatial heterogeneity for management of marine protected areas (MPAs): examples from assemblages of rocky coasts in the Northwest Mediterranean. Mar Environ Res 55:429–458

    CAS  PubMed  Google Scholar 

  7. Bertness MD, Callaway R (1994) Positive interaction in communities. Trends Ecol Evol 9:191–193

    CAS  PubMed  Google Scholar 

  8. Bornet E (1892) Les algues de P.-K.-a. Schousboe. Mémoires de la Société des Sciences Naturelles et Mathématiques de Cherbourg 28:165–376

    Google Scholar 

  9. Branch GM, Thompson RC, Crowe TP, Castilla JC, Langmead O, Hawkins SJ (2008) Rocky intertidal shores: prognosis for the future. In: Polunin N (ed) Aquatic ecosystems. Cambridge University Press, Trends and Global Prospects, pp 209–225

    Google Scholar 

  10. Bustamante RH, Branch GM, Eekhout S (1997) The influences of physical factors on the distribution and zonation patterns of south African rocky-shore communities. South African J Mar Sci 18:119–136

    Google Scholar 

  11. Cacabelos E, Martins GM, Thompson R, Prestes ACL, Azevedo JMN, Neto AI (2016) Material type and roughness influence structure of inter-tidal communities on coastal defenses. Mar Ecol 37:801–812

    Google Scholar 

  12. Caldeira RMA, Groom S, Miller P, Pilgrim D, Nezlin NP (2002) Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens Environ 80:336–360

    Google Scholar 

  13. Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47

    CAS  Google Scholar 

  14. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, PRIMER-E. ed

  15. Connolly RM, Roughgarden J (1999) Theory of marine communities: competition, predation, and recruitment-dependent interaction strength. Ecol Monogr 66:277–296

    Google Scholar 

  16. Cruz-Motta JJ (2007) Análisis espacial de las comunidades tropicales intermareales asociadas a los litorales rocosos de Venezuela. Ciencias Marinas 33(2):133–148

    Google Scholar 

  17. Daudin FM (1800) Receuil de mémoires et de notes sur des espèces inédites ou peu connues de Mollusques, de vers et de zoophytes. xviii & 19-50. Fuchs & Treuttel et Wurtz. Paris

  18. de Vasconcelos ERTPP, Vasconcelos JB, Reis TN, Concentino ALM, Mallea AJA, Martins GM, Neto AI, Fujii MT (2019) Macroalgal responses to coastal urbanization: relative abundance of indicator species. J Appl Phycol 31(2):893–903

    Google Scholar 

  19. Ferreira S (2011) Contributo para o estudo das Macroalgas do Intertidal da ilha da Madeira. Diversidade, Distribuição e Sazonalidade. Dissertação de mestrado, Universidade da Madeira, Portugal, 112 pp

  20. Firth LB, Thompson RC, White FJ, Schofield M, Skov MW, Hoggart SPG, Jackson J, Knights AM, Hawkins SJ (2013) The importance of water-retaining features for biodiversity on artificial intertidal coastal defence structures. Divers Distrib 19:1275–1283

    Google Scholar 

  21. Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Prog Ser 296:13–29

    Google Scholar 

  22. Gaspar R, Pereira L, Neto JM (2017) Intertidal zonation and latitudinal gradients on macroalgal assemblages: species, functional groups and thallus morphology approaches. Ecol Indic 81:90–103

    Google Scholar 

  23. Griffin JN, Jenkins SR, Gamfeldt L, Jones D, Hawkins SJ, Thompson RC (2009) Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118:1335–1342

    Google Scholar 

  24. Hawkins SJ, Corte-Real HBSM, Pannacciulli FG, Weber LC, Bishop JDD (2000) Thoughts on the ecology and evolution of the intertidal biota of the Azores and other Atlantic islands. Hydrobiologia 440:3–17

    Google Scholar 

  25. Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N et al (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Clim Res 37:123–133

    Google Scholar 

  26. Jenkins SR (2005) Larval habitat selection, not larval supply, determines settlement patterns and adult distribution in two chthamalid barnacles. J Anim Ecol 74:893–904

    Google Scholar 

  27. King PP (1832) Description of the Cirrhipeda, Conchifera and Mollusca, in a collection formed by the officers of H.M.S. adventure and beagle employed between the years 1826 and 1830 in surveying the southern coasts of South America, including the straits of Magalhaens and the coast of Tierra del Fuego. Zool J 5:332–349

    Google Scholar 

  28. Kohler KE, Gill S (2006) Coral point count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269

    Google Scholar 

  29. Kroeker KJ, Gambi MC, Micheli F (2013) Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc Natl Acad Sci 110:12721–12726

    CAS  PubMed  Google Scholar 

  30. Kützing FT (1843) Phycologia generalis: oder Anatomie. Physiologie und Systemkunde der tange. 458 pp

  31. Lamouroux JVF (1809) Observations sur la physiologie des algues marines, et description de cinq nouveaux genres de cette famille. N Bull Soc phil Paris 1(20):330–333

    Google Scholar 

  32. Lamouroux JVF (1812) Extrait d'un mémoire sur la classification des polypiers coralligènes non entièrement pierreux. N Bull Soc phil Paris 3:181–188

    Google Scholar 

  33. Le Hir M, Hily C (2005) Macrofaunal diversity and habitat structure in intertidal boulder fields. Biodivers Conserv 14:233

    Google Scholar 

  34. Leclerc JC (2018) Patterns of spatial variability between contrasting substrata: a boulder-field study. Mar Ecol Prog Ser 597:23–38

    Google Scholar 

  35. Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas ad genera relatas cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Stockholm

  36. Linnaeus C (1758) Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. 824 pp

  37. Linnaeus C (1767) Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii. 1327 pp

  38. Little C, Kitching JA (1996) The biology of rocky shores. Oxford University Press, London

    Google Scholar 

  39. Lubchenco J, Olson A, Brubaker L, Carpenter SR, Holland MM (1991) The sustainable biosphere initiative: an ecological research agenda. Ecology 72:371–412

    Google Scholar 

  40. Maggi E, Cappiello M, Del Corso A, Lenzarini F, Peroni E, Benedetti-Cecchi L (2016) Climate-related environmental stress in intertidal grazers: scaling-up biochemical responses to assemblage-level processes. PeerJ4:e2533

  41. Martins GM, Thompson RC, Hawkins SJ, Neto AI, Jenkins SR (2008) Rocky intertidal community structure in oceanic islands: scales of spatial variability. Mar Ecol Prog Ser 345:15–24

    Google Scholar 

  42. Martins GM, Amaral AF, Wallenstein FM, Neto AI (2009) Influence of a breakwater on nearby rocky intertidal community structure. Mar Environ Res 67

    CAS  PubMed  Google Scholar 

  43. Martins GM, Prestes ACL, Neto AI (2013a) Population structure in high shore littorinids: contrast between riprap and rocky shores. World Congress of Malacology, Ponta Delgada

    Google Scholar 

  44. Martins GM, Patarra RF, Álvaro NV, Prestes ACL, Neto AI (2013b) Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Mar Ecol 34:289–297

    Google Scholar 

  45. Martins GM, Neto AI, Cacabelos E (2016) Ecology of a key ecosystem engineer on hard coastal infrastructure and natural rocky shores. Mar Environ Res 113:88–94

    CAS  PubMed  Google Scholar 

  46. McGuinness KA (1987) Disturbance and organisms on boulders - I. patterns in the environment and the community. Oecologia 71(3):409–419

    CAS  PubMed  Google Scholar 

  47. McGuinness KA, Underwood AJ (1986) Habitat structure and the nature of communities on intertidal boulders. J Exp Mar Bio Ecol 104:97–123

    Google Scholar 

  48. McQuaid C, Branch G (1984) Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Mar Ecol Prog Ser 19:145–151

    Google Scholar 

  49. Menge BA, Daley BA, Lubchenco J, Sanford E, Dahlhoff E, Halpin PM, Hudson G, Burnaford JL (1999) Top-down and bottom-up regulation of New Zealand rocky interdial communities. Ecol Monogr 69:297–330

    Google Scholar 

  50. Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freldenberg TL, Gaines SD, Hudson G, Krenz C, Leslie H, Menge DNL, Russell R, Webster MS (2003) Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc Natl Acad Sci USAmerica 100:12229–12234

    CAS  Google Scholar 

  51. Miller LP, Harley CDG, Denny MW (2009) The role of temperature and desiccation stress in limiting the local-scale distribution of the owl limpet, Lottia gigantea. Funct Ecol 23(4):756–767

    Google Scholar 

  52. Molina-Montenegro MA, Muñoz AA, Badano EI, Morales BW, Fuentes KM, Cavieres LA (2005) Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Mar Ecol 292:173–180

    Google Scholar 

  53. Nardo GD (1834) De novo genere Algarum cui nomen est Hildbrandtia prototypus. Isis von Oken 1834:675–676

    Google Scholar 

  54. Neto AI (2000) Ecology and dynamics of two intertidal algal communities on the littoral of the island of São Miguel (Azores). Hydrobiologia 432:135–147

    Google Scholar 

  55. Neto AI (2001) Macroalgal species diversity and biomass of subtidal communities of São Miguel (Azores). Helgol Mar Res 55:101–111

    Google Scholar 

  56. Neto AI, Tittley I (1995) Structure and zonation of algal turf communities on the Azores: an numerical approach. Bol Mus Mun Funchal 4:487–504

    Google Scholar 

  57. Poli JX (1791) Testacea vtrivsqve Siciliae eorvmqve historia et anatome tabvlis aeneis illvstrata. Ex Regio Typographeio, Parmae 5:1–303

    Google Scholar 

  58. Risso A (1826-1827). Histoire naturelle des principales productions de l'Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Paris, Levrault 3(XVI): 1-480

  59. Robles CD, Alvarado MA, Desharnais RA (2001) The shifting balance of littoral predator-prey interaction in regimes of hydrodynamic stress. Oecologia 128:142–152

    PubMed  Google Scholar 

  60. Sangil C, Martins G, Hernández J, Alves F, Neto AI, Ribeiro C, León-Cisneros K, Canning-Clode J, Rosas-Alquicira E, Mendoza J, Tittley I, Wallenstein F, Couto RP, Kaufmann M (2018) Shallow subtidal macroalgae in the North-Eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structure. Eur J Phycol 53

  61. Sanz-Lázaro C (2016) Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances. Sci Rep 6:1–9

    Google Scholar 

  62. Scherner F, Antunes Horta P, Cabral de Oliveira E, Simonassi JC, Hall-Spencer JM, Chow F, Nunes JMC, Barreto Pereira SM (2013) Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull 76:106–115

    CAS  PubMed  Google Scholar 

  63. Simpson TJS, Smale DA, McDonald JI, Wernberg T (2017) Large scale variability in the structure of sessile invertebrate assemblages in artificial habitats reveals the importance of local-scale processes. J Exp Mar Bio Ecol 494:10–19

    Google Scholar 

  64. Sousa R, Vasconcelos J, Henriques P, Pinto AR, Delgado J, Riera R (2019) Long-term population status of two harvested intertidal grazers (Patella aspera and Patella candei), before (1996–2006) and after (2007–2017) the implementation of management measures. J Sea Res 144:33–38

    Google Scholar 

  65. Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Google Scholar 

  66. Stephenson TA, Stephenson A (1949) The universal features of zonation between the tidemarks on rocky coasts. J Ecol 38:289–305

    Google Scholar 

  67. Thompson TL, Glenn EP (1994) Plaster standards to measure water motion. Limnol Oceanogr 39:1768–1779

    Google Scholar 

  68. Thompson RC, Wilson BJ, Tobin ML, Hill AS, Hawkins SJ (1996) Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scales. J Exp Mar Bio Ecol 202:73–84

    Google Scholar 

  69. Thompson RC, Crowe TP, Hawkins SJ (2002) Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environ Conserv 29:168–191

    Google Scholar 

  70. Tomanek L, Helmuth B (2002) Physiological ecology of rocky intertidal organisms: a synergy of concepts. Integr Comp Biol 42:771–775

    PubMed  Google Scholar 

  71. Tucker L, Griffiths CL, Schroeter F, Vetter HD (2017) Boulder shores in South Africa – a distinct but poorly documented coastal habitat type. Afr J Mar Sci 39(2):193–202

    Google Scholar 

  72. Tuya F, Haroun RJ (2006) Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian archipelago: a multiscaled approach. Mar Ecol Prog Ser 311:15–28

    Google Scholar 

  73. Underwood AJ (1980) The effects of grazing by gastropods and physical factors on the upper limits of distribution of intertidal macroalgae. Oecologia 46:201–213

    CAS  PubMed  Google Scholar 

  74. Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  75. Underwood AJ (2000) Experimental ecology of rocky intertidal habitats what are we learning? J Exp Mar Bio Ecol 250:51–76

    CAS  PubMed  Google Scholar 

  76. Underwood AJ, Chapman MG, Connell SD (2000) Observation in ecology: you can’t make progress on process without understanding the patterns. J Exp Mar Bio Ecol 20:97–115

    Google Scholar 

  77. Veiga P, Rubal M, Vieira R, Arenas F, Sousa-Pinto I (2013) Spatial variability in intertidal macroalgal assemblages on the north Portuguese coast: consistence between species and functional group approaches. Helgol Mar Res 67:191–201

    Google Scholar 

  78. Wallenstein FM, Neto AI (2006) Intertidal rocky shore biotopes of the Azores: a quantitative approach. Helgol Mar Res 60:196–206

    Google Scholar 

  79. Wallenstein FM, Neto AI, Álvaro NV, Santos CI (2008) Algae-based biotopes of the Azores (Portugal): spatial and seasonal variation. Aquat Ecol 42:547–559

    Google Scholar 

  80. Williams SL, Bracken MES, Jones E (2013) Additive effects of physical stress and herbivores on intertidal seaweed diversity. Ecology 94:1089–1101

    PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Nahir Abraín and Lurdes Ferreira for their assistance during field surveys and to Drs. Gustavo Martins and Juan Moreira for their helpful comments. Finally, this study had the support of Fundação para a Ciência e Tecnologia (FCT), through the strategic project UID/MAR/04292/2019 granted to MARE. The manuscript was substantially improved through the comments and suggestions of two anonymous reviewers. This is contribution #42 from the Smithsonian’s MarineGEO network.

Funding

EC and IG were financially supported by post-doctoral grants in the framework of the 2015 ARDITI Grant Programme Madeira 14-20 (Project M1420-09-5369-FSE-000001). PR was financially supported by the Oceanic Observatory of Madeira Project (M1420-01-0145-FEDER-000001-Observatório Oceânico da Madeira-OOM), co-financed by the Madeira Regional Operational Programme (Madeira 14-20), under the Portugal 2020 strategy, through the European Regional Development Fund (ERDF). JCC was supported by a starting grant in the framework of the 2014 FCT Investigator Programme (IF/01606/2014/CP1230/CT0001). Additional funding was provided from National Funds through FCT-Fundação para a Ciência e a Tecnologia, under the projects UID/BIA/00329/2013, 2015-2018 and UID/BIA/00329/2019, and DRCT-M1.1.a/005/Funcionamento-C/2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eva Cacabelos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No animal testing was performed during this study.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by I. Kjersti Sjøtun

Electronic supplementary material

Fig. S1
figure9

Low level. a, Mean (+SE, per quadrat) number of Patella spp. across locations and sampling times, and b, across sites (showing differences between the substratum types (for further details see Tables S1 and S2). (PNG 233 kb)

Fig. S2
figure10

Mid level. Mean (+SE, per quadrat) a, cover of sessile organisms across time showing differences between the substratum types, b, across locations, showing differences between the substratum types, and c, total number of motile fauna across sites, showing differences between the substratum types. (PNG 466 kb)

Fig. S3
figure11

Mid level. Mean (+SE, per quadrat) cover of Chthamalus, a, across locations, and, b, across time, showing differences between the substratum types, and c, number of Melarhaphe across sites, showing differences between the substratum types. (PNG 239 kb)

Fig. S4
figure12

High level. Mean (+SE, per quadrat) a, total counts of motile fauna, and b, cover of sessile organisms across time, showing differences between the substratum types and orientations, c, number of taxa, d, number of Phorcus and, e, Melarhaphe across locations and sampling times showing differences between the substratum types. (PNG 350 kb)

ESM 1

(DOCX 42 kb)

High Resolution Image (TIF 49 kb)

High Resolution Image (TIF 117 kb)

High Resolution Image (TIF 54 kb)

High Resolution Image (TIF 68 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cacabelos, E., Gestoso, I., Ramalhosa, P. et al. Intertidal assemblages across boulders and rocky platforms: a multi-scaled approach in a subtropical island. Mar. Biodivers. 49, 2709–2723 (2019). https://doi.org/10.1007/s12526-019-01000-7

Download citation

Keywords

  • Madeira
  • Hierarchical design
  • Substratum type
  • Hydrodynamics
  • Benthos
  • Macroalgae
  • Gastropods
  • Intertidal communities
  • Functional groups