Population genetic structure of Thryssa kammalensis in the Chinese Seas inferred from control region sequences

Abstract

Thryssa kammalensis (Bleeker, 1849) is a common pelagic species in the Chinese Seas and plays an important role in marine ecosystems. In the present study, 196 individuals of T. kammalensis were collected from nine localities along the Chinese coastal waters. The partial control region sequences of them were sequenced for analysis. Variable numbers of tandem repeats (VNTRs) were common in the control regions of all individuals, which led to variation in sequence length, ranging from 772 to 924 bp. All the populations exhibited high haplotype diversity (0.946–1.000) and low nucleotide diversity (0.015–0.031). Two distinct lineages were identified based on the neighbor-joining (NJ) tree, Bayesian inference (BI) trees, and minimum spanning tree (MST). However, the relative frequency of individuals occupying the two major lineages did not differ significantly among sampling locations. In addition, both molecular variance analysis (AMOVA) and pairwise FST analysis strongly supported little genetic differentiation among populations, revealing no significant genetic structure for T. kammalensis. Neutrality tests and analysis of mismatch distribution suggested that recent population expansion occurred in the two lineages. The climatic changes during Pleistocene periods and dispersal strategy leading to the continual gene flow might have played an important role in the geographical pattern of T. kammalensis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. Genetics 132:211–220

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Avise JC (2000) Phylogeography: the history and formation of species. Massachusetts, Cambridge

    Google Scholar 

  3. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. https://doi.org/10.1093/nar/27.2.573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bleeker P (1849) Bijdrage tot de kennis der ichthyologische fauna van het eiland Madura, met beschrijving van eenige nieuwe species. Verh Batav Genoot Kunst Wet 22:1–16

    Google Scholar 

  5. Bowen BW, Muss A, Rocha LA, Grant WS (2006) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. Heredity 97:1–12. https://doi.org/10.1093/jhered/esj006

    Article  CAS  Google Scholar 

  6. Broughton RE, Dowling TE (1994) Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera. Genetics 138:179–190

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics, 3rd edn. Plenum, New York, pp 95–130

    Google Scholar 

  8. Cheng QT, Zheng BS (1987) Systematic synopsis of fishes in China. Science Press, Beijing (In Chinese)

    Google Scholar 

  9. Cheng J, Yanagimoto T, Song N, Gao TX (2015) Population genetic structure of chub mackerel Scomber japonicus in the northwestern Pacific inferred from microsatellite analysis. Mol Boil Rep 42:373–382. https://doi.org/10.1007/s11033-014-3777-2

    Article  CAS  Google Scholar 

  10. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. https://doi.org/10.1038/nmeth.2109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dieckmann U, O’Hara B, Weisser W (1999) The evolutionary ecology of dispersal. Trends Ecol Evol 14:88–90. https://doi.org/10.1016/S0169-5347(98)01571-7

    Article  Google Scholar 

  12. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Evol 13:853–864. https://doi.org/10.1046/j.1365-294X.2003.02004.x

    Article  CAS  Google Scholar 

  14. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  15. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Garber AF, Tringali MD, Franks JS (2005) Population genetic and phylogeographic structure of wahoo, Acanthocybium solandri, from the western Central Atlantic and central pacific oceans. Mar Biol 147:205–214. https://doi.org/10.1007/s00227-004-1533-1

    Article  Google Scholar 

  18. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Heredity 89:415–426. https://doi.org/10.1093/jhered/89.5.415

    Article  Google Scholar 

  19. Grunwald C, Stabile J, Waldman JR, Gross R, Wirgin I (2002) Population genetics of shortnose sturgeon acipenser brevirostrum based on mitochondrial dna control region sequences. Mol Ecol 11:1885. https://doi.org/10.1046/j.1365-294X.2002.01575.x

    Article  PubMed  CAS  Google Scholar 

  20. Guo XW, Tang QS (2000) Consumption and ecological conversion efficiency of Thrissa kammalensis. J Fish China 24:422–427

    Google Scholar 

  21. Han Z, Yanagimoto T, Zhang Y, Gao T (2012) Phylogeography study of Ammodytes personatus in northwestern Pacific: Pleistocene isolation, temperature and current conducted secondary contact. PLoS One 7:e37425. https://doi.org/10.1371/journal.pone.0037425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Harrison RG (1989) Animal mtDNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4:6–11. https://doi.org/10.1016/0169-5347(89)90006-2

    Article  PubMed  CAS  Google Scholar 

  23. Henriques R, Potts W, Santos C (2014) Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela current region: evidence of an ancient Vicariant event. PLoS One 9:e87907–e87907. https://doi.org/10.1371/journal.pone.0087907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. https://doi.org/10.1038/35016000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Imbrie J, Boyle EA, Clemens SC et al (1992) On the structure and origin of major glaciation cycles. 1: linear responses to Milankovitch forcing. Paleoceanography 7:701–738. https://doi.org/10.1029/92PA02253

    Article  Google Scholar 

  26. Kennett JP, Ingram BL (1995) A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature 377:510–514. https://doi.org/10.1038/377510a0

    Article  CAS  Google Scholar 

  27. Klanten OS, Choat JH, Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670. https://doi.org/10.1007/s00227-006-0372-7

    Article  Google Scholar 

  28. Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206. https://doi.org/10.1038/NATURE01089

    Article  PubMed  CAS  Google Scholar 

  29. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control region. Mol Evol 41:54–66. https://doi.org/10.1007/BF00174041

    Article  CAS  Google Scholar 

  30. Li HY, Xu TJ, Cheng YZ, Sun DQ, Wang RX (2012) Genetic diversity of Setipinna taty (Engraulidae) populations from the China Sea based on mitochondrial DNA control region sequences. Genet Mol Res 11:1230. https://doi.org/10.4238/2012.May.9.1

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, Song N, Lin L, Gao T (2016) The complete mitochondrial genome of Pampus echinogaster (Perciformes: Stromateidae). Mitochondrial DNA Part A 27:289–290. https://doi.org/10.3109/19401736.2014.892081

    Article  CAS  Google Scholar 

  32. Liu JQ, Wang WY (1997) Quaternary geological dating and time scale. Quaternaryences 3:193–202

    Google Scholar 

  33. Liu JX, Gao TX, Yokogawa K, Zhang YP (2006) Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in northwestern Pacific. Mol Phylogenet Evol 39:799–811. https://doi.org/10.1016/j.ympev.2006.01.009

    Article  PubMed  CAS  Google Scholar 

  34. Liu JX, Gao TX, Wu SF, Zhang YP (2007) Pleistocene isolation in the northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Mol Ecol 16:275–288. https://doi.org/10.1111/j.1365-294X.2006.03140.x

    Article  CAS  Google Scholar 

  35. Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455. https://doi.org/10.1046/j.1365-294x.1998.00495.x

    Article  PubMed  CAS  Google Scholar 

  36. Ma C, Cheng Q, Zhang Q (2012) Genetic diversity and demographical history of Coilia ectenes (Clupeiformes: Engraulidae) inferred from the complete control region sequences of mitochondrial dna. Mitochondrial DNA 23:396–404. https://doi.org/10.3109/19401736.2012.710202

    Article  PubMed  CAS  Google Scholar 

  37. Mundy NI, Helbig AJ (2004) Origin and evolution of tandem repeats in the mitochondrial DNA control region of shrikes (Lanius spp.). Mol Evol 59:250–257. https://doi.org/10.1007/s00239-004-2619-6

    Article  CAS  Google Scholar 

  38. Okada K, Yamazaki Y, Yokobori S, Wada H (2010) Repetitive sequences in the lamprey mitochondrial dna control region and speciation of lethenteron. Gene 465:45. https://doi.org/10.1016/j.gene.2010.06.009

    Article  PubMed  CAS  Google Scholar 

  39. Omote K, Nishida C, Dick MH, Masuda R (2013) Limited phylogenetic distribution of a long tandem-repeat cluster in the mitochondrial control region in bubo (Aves, Strigidae) and cluster variation in Blakiston's fish owl (Bubo blakistoni). Mol Phylogenet Evol 66:889–897. https://doi.org/10.1016/j.ympev.2012.11.015

    Article  PubMed  Google Scholar 

  40. Ong TS, Wirgin LJ (1996) Genetic divergence between Acipenser oxyrinchus oxyrinchus and A. o. desotei as assessed by mitochondrial DNA sequencing analysis. Copeia 2:464–469. https://doi.org/10.2307/1446867

    Article  Google Scholar 

  41. Pedrosa-Gerasmio IR, Agmata AB, Santos MD (2015) Genetic diversity, population genetic structure, and demographic history of Auxis thazard (Perciformes), Selar crumenophthalmus (Perciformes), Rastrelliger kanagurta (Perciformes) and Sardinella lemuru (Clupeiformes) in Sulu-Celebes Sea inferred by mitochondrial DNA sequences. Fish Res 162:64–74. https://doi.org/10.1016/j.fishres.2014.10.006

    Article  Google Scholar 

  42. Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436. https://doi.org/10.1038/20859

    Article  CAS  Google Scholar 

  43. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/Tracer.

  44. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86. https://doi.org/10.1093/molbev/msg009

    Article  CAS  Google Scholar 

  45. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727

    Article  PubMed  CAS  Google Scholar 

  46. Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394:162–165. https://doi.org/10.1038/28134

    Article  CAS  Google Scholar 

  47. Ronquist F, Teslenko M, van der Mark P et al (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saccone C, Attimonelli M, Sbisi E (1987) Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. Mol Evol 26:205–211. https://doi.org/10.1007/BF02099853

    Article  CAS  Google Scholar 

  49. Sarpedonti V, Chong VC (2008) Abundance and distribution of Stolephorus baganensis Hardenberg 1933 and Thryssa kammalensis (Bleeker 1849) larvae in relation to ontogeny and environmental factors in a Malaysian estuary. Trop Zool 21:195–208

    Google Scholar 

  50. Shen KN, Jamandre BW, Hsu CC, Tzeng WN, Durand JD (2011) Plio-Pleistocene Sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol Biol 11:83. https://doi.org/10.1186/1471-2148-11-83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Song N, Ma G, Zhang X, Gao T, Sun D (2014) Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis. Environ Biol Fish 97:69–77. https://doi.org/10.1007/S10641-013-0124-8

    Article  Google Scholar 

  52. Stepien CA, Dillon AK, Chandler MD (1998) Evolutionary relationships, phylogeography, and genetic identity of the ruffe Gymnocephalus in the north American Great Lakes and Eurasia from mtDNA control region sequences. J Great Lakes Res 24:361–378. https://doi.org/10.1016/S0380-1330(98)70827-5

    Article  CAS  Google Scholar 

  53. Tajima F (1989a) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Tajima F (1989b) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  PubMed  CAS  Google Scholar 

  56. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Voris HK (2000) Maps of Pleistocene Sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167. https://doi.org/10.1046/j.1365-2699.2000.00489.x

    Article  Google Scholar 

  58. Wang PX (1990) The ice-age China Sea—status and problems. Quaternary Sci 2:111–124

    Google Scholar 

  59. Ward RD, Grewe PM (1994) Appraisal of molecular genetic techniques in fisheries. Rev Fish Biol Fisher 4:300–325. https://doi.org/10.1007/BF00042907

    Article  Google Scholar 

  60. Whitehead PJP, Nelson GJ, Wongratana T (1988) FAO species catalogue. Vol. 7. Clupeoid fishes of the world (suborder Clupeoidei). Part 2: Engraulididae. FAO Fish Synop 125:305–579

    Google Scholar 

  61. Xiao Y, Zhang Y, Gao T, Yanagimoto T, Yabe M, Sakurai Y (2009) Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ Biol Fish 85:303–314. https://doi.org/10.1007/s10641-009-9497-0

    Article  Google Scholar 

  62. Zhang XW, Chen ZR, Buan HC, He GF, Sha XS (1982) On the development of the eggs and larvae of Thrissa kammalensis and Thrissa mystax. Acta Zool Sin 2:89–95

    Google Scholar 

  63. Zhu YD, Zhang CL, Cheng QT (1963) Fishes annals of East China Sea. Science Press, Beijing (In Chinese)

    Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China (Grant Number: 2018YFC1406302), the National Programme on Global Change and Air-Sea Interaction (Grant Number: GASI-02-SCS-YSWspr/aut), and the National Natural Science Foundation of China (Grant Number: 41776171).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tianxiang Gao or Longshan Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was not required for this study due to no endangered animals involved. All handling of T. kammalensis specimens was conducted in strict accordance with Animal Care Quality Assurance in China.

Sampling and field studies

All sampling and experimental protocols were conducted under the permits approved by Third Institute of Oceanography, Ministry of Natural Resources.

Data availability

The datasets (sequences) generated during the current study have been deposited in GenBank with the accession numbers MH890693-MH890808.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by R. Thiel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, N., Li, Y. et al. Population genetic structure of Thryssa kammalensis in the Chinese Seas inferred from control region sequences. Mar. Biodivers. 49, 2621–2632 (2019). https://doi.org/10.1007/s12526-019-00995-3

Download citation

Keywords

  • Genetic diversity
  • Phylogenetic relationships
  • Population differentiation
  • Demographic history