Advertisement

Thermal stress and tropical reefs: mass coral bleaching in a stable temperature environment?

  • Marcelo de Oliveira SoaresEmail author
  • Carlos Eduardo Peres Teixeira
  • Sarah Maria Cavalcante Ferreira
  • Anne Larisse Alves Rebouças Gurgel
  • Bárbara Pereira Paiva
  • Maria Ozilea Bezerra Menezes
  • Marcus Davis
  • Tallita Cruz Lopes Tavares
Short Communication
  • 99 Downloads

Abstract

This study reports on the deepest records (~ 24 m depth) of coral bleaching in a naturally temperature-stable environment (> 26 °C with an intra-annual variability of ~ 2 °C), which was recorded during a mass bleaching event in the locally dominant, massive scleractinian coral Siderastrea stellata in equatorial waters of Brazil (SW Atlantic). An inter-annual analysis (2002–2017) indicated that this bleaching event was related to anomalies in sea surface temperature (SST) that led to the warmest year (2010) in this century (1 to 1.7 °C above average). Such anomalies caused heat stress (28.5–29.5 °C) in this equatorial environment that resulted in a bleaching event. Our results suggest that the increase in SST, low turbidity, and weak winds may have acted together to affect these stress-tolerant corals in marginal reefs. The equatorial coastline of Brazil is characterized by low intra-annual and inter-annual variations in SST, which suggests that the S. stellata corals here may be acclimatized to these stable conditions and, consequently, have a lower bleaching threshold because of lower historical heat stress.

Keywords

ENSO Coral reef Temperature Climate change Siderastrea stellata Brazil 

Notes

Acknowledgments

We appreciate the constructive comments made by two anonymous reviewers on the manuscript.

Authors’ contributions

MOS and TT conceived and coordinated the study, analyzed coral species and remote sensing data, participated in its design, and helped to write and revise the manuscript. MD, SF, BP, MM, and AG executed the study and revised the manuscript. CEPT helped to write and revise the manuscript. All authors read and approved the final manuscript.

Funding information

Financial support was provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico — CNPq (Grants 233808/2014-0 and 307061/2017), CAPES-PRINT Program, Projeto CORAL VIVO, PRONEX FUNCAP/CNPq (Grant PR2-0101-00008.01.00/15), and INCT AmbTropic (National Institute of Science and Technology for the Tropical Marine Environment).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

No animal testing was performed during this study.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgments, if applicable. The study is compliant with the Convention on Biological Diversity (CBD) and Nagoya Protocol.

Data availability

The datasets generated during and/or analyzed during the current study are available as supplementary material.

Supplementary material

12526_2019_994_MOESM1_ESM.doc (6.4 mb)
ESM 1 (DOC 6580 kb)

References

  1. Alemu IJB, Clement Y (2014) Mass coral bleaching in 2010 in the southern Caribbean. PLoS One 9:e83829.  https://doi.org/10.1371/journal.pone.0083829 CrossRefGoogle Scholar
  2. Andrade AB, Soares MO (2017) Offshore marine protected areas: divergent perceptions of divers and artisanal fishers. Mar Policy 76:107–113.  https://doi.org/10.1016/j.marpol.2016.11.016 CrossRefGoogle Scholar
  3. Barros MMLD, Pires DO (2006) Colony size-frequency distributions among different populations of the scleractinian coral Siderastrea stellata in Southwestern Atlantic: implications for life history patterns. Braz J Oceanogr 54:213–223.  https://doi.org/10.1590/S1679-87592006000300005 CrossRefGoogle Scholar
  4. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471.  https://doi.org/10.1016/j.ecss.2008.09.003 CrossRefGoogle Scholar
  5. Barkley HC, Cohen AL, Mollica NR, Brainard RE, Rivera HE, DeCarlo TM, Lohmann GP, Drenkard EJ, Alpert AE, Young CW, Vargas-Angel B, Lino KC, Oliver TA, Pietro KR, Luu VH (2018) Repeat bleaching of a central Pacific coral reef over the past six decades (1960-2016). Commun Biol 1:177.  https://doi.org/10.1038/s42003-018-0183-7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bourles B, Gouriou Y, Chuchla R (1999) On the circulation and upper layer of the western equatorial Atlantic. J Geophys Res 104:21151–21170.  https://doi.org/10.1029/1999JC900058 CrossRefGoogle Scholar
  7. Cacciapaglia C, Woesik R (2015) Climate-change refugia: shading reef corals by turbidity. Glob Change Biol 22:1145–1154.  https://doi.org/10.1111/gcb.13166 CrossRefGoogle Scholar
  8. Carili J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7:e34418.  https://doi.org/10.1371/journal.pone.0034418 CrossRefGoogle Scholar
  9. Correia MD (2011) Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J Mar Biol Assoc UK 91:659–668.  https://doi.org/10.1017/S0025315410000858 CrossRefGoogle Scholar
  10. Costa FC, Sassi R, Gorlach-Lira K (2008) Zooxanthellae genotypes in the coral Siderastrea stellata from coastal reefs in northeastern Brazil. J Exp Mar Biol Ecol 367:149–152.  https://doi.org/10.1016/j.jembe.2008.09.012 CrossRefGoogle Scholar
  11. Dias FJS, Castro BM, Lacerda LD (2013) Continental shelf water masses off the Jaguaribe River (4S), northeastern Brazil. Cont Shelf Res 66:123–135.  https://doi.org/10.1016/j.csr.2013.06.005 CrossRefGoogle Scholar
  12. Dias TLP, Gondim AI (2016) Bleaching in scleractinian corals, hydrocorals, and octocorals during thermal stress in a northeastern Brazilian reef. Mar Biodivers 46:303–307.  https://doi.org/10.1007/s12526-015-0342-8 CrossRefGoogle Scholar
  13. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945.  https://doi.org/10.1029/96JC03296 CrossRefGoogle Scholar
  14. Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64:1737–1765.  https://doi.org/10.1016/j.marpolbul.2012.05.008 CrossRefPubMedGoogle Scholar
  15. Ferreira BP, Costa MBS, Coxey MS, Gaspar ALB, Veleda D, Araujo M (2013) The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs 32:441–454.  https://doi.org/10.1007/s00338-012-0992-y CrossRefGoogle Scholar
  16. Frade PR, Bongaerts P, Englebert N, Rogers A, Gonzalez-Rivero M, Hoegh-Guldberg O (2018) Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat Commun 9:3447.  https://doi.org/10.1038/s41467-018-05741-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Francini-Filho RB, Asp NE, Siegle E, Hocevar J, Lowyck K, D’ Avila N, Vasconcelos AA, Baitelo R, Rezende CE, Omachi CY, Thompson CC, Thompson FL (2018) Perspectives on the Great Amazon Reef: extension, biodiversity, and threats. Front Marine 5:142.  https://doi.org/10.3389/fmars.2018.00142 CrossRefGoogle Scholar
  18. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7:e33353.  https://doi.org/10.1371/journal.pone.0033353 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guest JR, Tun K, Low J, Vergés A, Marzinelli EM, Campbell AH, Bauman AG, Feary DA, Chou LM, Steinberg PD (2016) 27 years of benthic and coral community dynamics on turbid, highly urbanized reefs off Singapore. Sci Rep 6:36260.  https://doi.org/10.1038/srep36260 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hoeksema BW (1991) Control of bleaching in mushroom coral populations (Scleractinia: Fungiidae) in the Java Sea: stress tolerance and interference by life history strategy. Mar Ecol Prog Ser 74:225–237.  https://doi.org/10.3354/meps074225 CrossRefGoogle Scholar
  21. Hoeksema BW, Wirtz P (2013) Over 130 years of survival by a small, isolated population of Favia gravida corals at Ascension Island (South Atlantic). Coral Reefs 32:551.  https://doi.org/10.1007/s00338-012-1002-0 CrossRefGoogle Scholar
  22. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JPA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377.  https://doi.org/10.1038/nature21707 CrossRefPubMedGoogle Scholar
  23. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs JPA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83.  https://doi.org/10.1126/science.aan8048 CrossRefPubMedGoogle Scholar
  24. Knoppers B, Ekau W, Figueiredo AG (1999) The coast and shelf of east and northeast Brazil and material transport. Geo-Mar Lett 19:171–178.  https://doi.org/10.1007/s003670050106 CrossRefGoogle Scholar
  25. Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovieroski HH, Oliveira MD, Maida M, Correia MD, Johnsson R (2016) Brazilian coral reefs in a period of global change: a synthesis. Braz J Oceanogr 64:97–116.  https://doi.org/10.1590/S1679-875920160916064sp2 CrossRefGoogle Scholar
  26. Magris RA, Heron SF, Pressey RL (2015) Conservation planning for coral reefs accounting for climate warming disturbances. PLoS One 10:e0140828.  https://doi.org/10.1371/journal.pone.0140828 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marengo JA, Torres RR, Alves LM (2017) Drought in Northeast Brazil-past, present, and future. Theor Appl Climatol 129:1189–1200.  https://doi.org/10.1007/s00704-016-1840-8 CrossRefGoogle Scholar
  28. Miranda RJ, Cruz ICS, Leão ZMAN (2013) Coral bleaching in the Caramuanas reef (Todos os Santos Bay, Brazil) during the 2010 El Niño event. Lat Am J Aquat Res 41:351–360.  https://doi.org/10.3856/vol41-issue2-fulltext-14 CrossRefGoogle Scholar
  29. Monroe AA, Ziegler M, Roik A, Röthig T, Hardenstine RS, Emms MA, Jensen T, Voolstra CR, Berumen ML, Ferse SCA (2018) In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PLOS ONE 13 (4):e0195814.  https://doi.org/10.1371/journal.pone.0195814
  30. Monteiro JG, Costa CF, Gorlach-Lira K, Fitt WK, Stefanni SS, Sassi R, Santos RS, LaJeunesse TC (2013) Ecological and biogeographic implications of Siderastrea symbiotic relationship with Symbiodinium sp C46 in Sal Island (Cape Verde, East Atlantic Ocean). Mar Biodivers 43:261–272.  https://doi.org/10.1007/s12526-013-0153-8 CrossRefGoogle Scholar
  31. Muir PR, Marshall PA, Abdulla A, Aguirre JD (2017) Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef? P Roy Soc B - Biol Sci 284:1864.  https://doi.org/10.1098/rspb.2017.1551 CrossRefGoogle Scholar
  32. Nohaïc ML, Ross CL, Cornwall CE, Comeau S, Lowe R, McCulloch MT, Shoepf V (2017) Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci Rep 7:14999.  https://doi.org/10.1038/s41598-017-14794-y CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oigman-Pszczol SS, Creed JC (2011) Can patterns in benthic communities be explained by an environmental pressure index? Mar Pollut Bull 62:2181–2218.  https://doi.org/10.1016/j.marpolbul.2011.07.001 CrossRefPubMedGoogle Scholar
  34. Pereira NS, Sial AN, Kikuchi RKP, Ferreira VP, Ullmann CV, Frei R, Cunha AMC (2015) Coral-based climate records from tropical South Atlantic: 2009/2010 ENSO event in C and O isotopes from Porites corals (Rocas Atoll, Brazil). Ann of Braz Acad Sci 87:1939–1957.  https://doi.org/10.1590/0001-3765201520150072 CrossRefGoogle Scholar
  35. Portugal AB, Carvalho FL, Carneiro PBM, Rossi S, Soares MO (2016) Increased anthropogenic pressure decreases species richness in tropical intertidal reefs. Mar Environ Res 120:44–54.  https://doi.org/10.1016/j.marenvrres.2016.07.005 CrossRefPubMedGoogle Scholar
  36. Rosa IC, Rocha RJM, Cruz I, Lopes A, Menezes N, Bandarra N, Kikuchi R, Serôdio J, Soares AMVM, Rosa R (2018) Effect of tidal environment on the trophic balance of mixotrophic hexacorals using biochemical profile and photochemical performance as indicators. Mar Environ Res 135:55–62.  https://doi.org/10.1016/j.marenvres.2018.01.018 CrossRefPubMedGoogle Scholar
  37. Rossi S, Soares MO (2017) Effects of El Niño on the coastal ecosystems and their related services. Mercator 16:e16030.  https://doi.org/10.4215/rm2017.e16030 CrossRefGoogle Scholar
  38. Schoepf V, Stat M, Falter JL, McColluch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep 5:17639.  https://doi.org/10.1038/srep17639 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Soares MO, Rabelo EF (2014) Primeiro registro de branqueamento de corais no litoral do Ceará (NE, Brasil): Indicador das mudanças climáticas? Revista Geociências UNESP 33:1–10 http://revistageociencias.com.br/geociencias-arquivos/33/volume33_1_files/33-1-artigo-1.pdf. Accessed 3 May 2019
  40. Soares MO, Martins FAS, Carneiro PBM, Rossi S (2017) The forgotten reefs: benthic assemblage coverage on a sandstone reef (Tropical Southwestern Atlantic). J Mar Biol Assoc UK 97:1585–1592.  https://doi.org/10.1017/S0025315416000965 CrossRefGoogle Scholar
  41. Soares MO, Tavares TCL, Carneiro PBM (2019) Mesophotic ecosystems: distribution, impacts and conservation in the South Atlantic. Divers Distrib 25:255–268.  https://doi.org/10.1111/ddi.12846 CrossRefGoogle Scholar
  42. Suggett DJ, Kikuchi RKP, Oliveira MDM, Spanó S, Carvalho R, Smith DJ (2012) Photobiology of corals from Brazil’s near-shore marginal reefs of Abrolhos. Mar Biol 159:1461–1473.  https://doi.org/10.1007/s00227-012-1925-6 CrossRefGoogle Scholar
  43. Sutthacheep M, Yucharoen M, Klinthong W, Pengsakun S, Sangmanee K, Yeemin T (2012) Coral mortality following the 2010 mass bleaching event at Kut island, Thailand. Phuket Mar Biol Cent Res Bull 71:83–92 https://www.dmcr.go.th/dmcr/fckupload/upload/44/image/FullpaperPMBC/2012 Vol.71 Sutthacheep 83 92.pdf Google Scholar
  44. Teixeira CEP, Machado GT (2013) On the temporal variability of the sea surface temperature on the Tropical Southwest Atlantic Continental Shelf. J Coastal Res 65:2071–2076.  https://doi.org/10.2112/SI65-350.1 CrossRefGoogle Scholar
  45. Woesik RV, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76.  https://doi.org/10.3354/meps09203 CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung 2019

Authors and Affiliations

  • Marcelo de Oliveira Soares
    • 1
    • 2
    Email author
  • Carlos Eduardo Peres Teixeira
    • 1
  • Sarah Maria Cavalcante Ferreira
    • 1
  • Anne Larisse Alves Rebouças Gurgel
    • 1
  • Bárbara Pereira Paiva
    • 1
  • Maria Ozilea Bezerra Menezes
    • 1
  • Marcus Davis
    • 1
    • 3
  • Tallita Cruz Lopes Tavares
    • 1
  1. 1.Instituto de Ciências do Mar-LABOMARUniversidade Federal do CearáFortalezaBrazil
  2. 2.Institut de Ciència i Tecnologia Ambientals (ICTA)Universitat Autònoma de Barcelona (UAB)BarcelonaSpain
  3. 3.Mar do CearáFortalezaBrazil

Personalised recommendations