Colour pattern measurements successfully differentiate two cryptic Onchidiidae Rafinesque, 1815 species

Abstract

Cryptic species, by definition, appear very similar to each other. In the absence of obvious external morphological differences, quantitative measurements of fine-scale colour pattern differences may be used to distinguish between cryptic species. To demonstrate how this is accomplished, 30 specimens each of two cryptic onchidiid sea slug species in Singapore were collected and identified by sequencing a fragment of the mitochondrial cytochrome c oxidase subunit I gene. Sequences displayed a clear barcode gap: intraspecific distances (0–0.4%) and interspecific distances (4.8–5.5%) were distinct. To quantify colour patterns, eight pattern properties on the animals’ dorsal surface were measured using the PAT-GEOM software. Linear discriminant analysis and classification tree analysis were able to classify specimens with 80% and 81.7% accuracy respectively, and both identified proportion cover and randomness as the most important properties for differentiating the two species. Agreement between the genetic and pattern data is demonstrated by a significant correlation between the pairwise genetic and pattern distance matrices, as well as the significantly greater interspecific than intraspecific distances in both datasets. These results demonstrate that fine-scale pattern differences can be used to differentiate Peronia cryptic species. This approach has potential applications for a range of disciplines, including behaviour and ecology, and as an additional line of evidence for integrative taxonomy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Awati PR, Karandikar KR (1948) Onchidium verraculatum, Cuv. (anatomy, embryology and bionomics). Zool Mem Univ Bombay 1:1–52

  2. Beheregaray LB, Caccone A (2007) Cryptic biodiversity in a changing world. J Biol 6(4):9. https://doi.org/10.1186/jbiol60

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bergh R (1891) Die cryptobranchiaten Dorididen. Zool Jahrb Abt Anat Ontog Tiere 6:103–144

  4. Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram K, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  5. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349

    Article  Google Scholar 

  6. Breiman L, Friedman JH, Stone CJ, Olshen RA (1984) Classification and regression trees. Taylor & Francis, Abingdon-on-Thames

    Google Scholar 

  7. Britton KM (1984) The Onchidiacea (Gastropoda: Pulmonata) of Hong Kong with a worldwide review of the genera. J Molluscan Stud 50:179–191

    Google Scholar 

  8. Brower AV (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biodivers 4(2):127–132. https://doi.org/10.1017/S147720000500191X

    Article  Google Scholar 

  9. Chan IZW, Stevens M, Todd PA (2018) PAT-GEOM: a software package for the analysis of animal patterns. Methods Ecol Evol, 0:1–10. https://doi.org/10.1111/2041-210X.13131

  10. Chang JJM, Tay YC, Ang HP, Tun KPP, Chou LM, Meier R, Huang D (2018) Molecular and anatomical analyses reveal that Peronia verruculata (Gastropoda: Onchidiidae) is a cryptic species complex. Contrib Zool 87(3):149–165

    Article  Google Scholar 

  11. Cronin TW, Shashar N, Caldwell RL, Marshall J, Cheroske AG, Chiou TH (2003) Polarization vision and its role in biological signaling. Integr Comp Biol 43(4):549–558. https://doi.org/10.1093/icb/43.4.549

    Article  PubMed  Google Scholar 

  12. Crook AC (1997) Colour patterns in a coral reef fish: is background complexity important? J Exp Mar Biol Ecol 217(2):237–252. https://doi.org/10.1016/S0022-0981(97)00059-2

    Article  Google Scholar 

  13. Cuthill IC, Partridge JC, Bennett AT, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. In: Slater P, Rosenblatt J, Snowdon C, Roper T (eds) Advances in the study of behavior, vol 29. Academic Press, Cambridge, pp 159–214

    Google Scholar 

  14. Cuvier G, Latreille PA (1830) Le règne animal distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée, 2nd edn. Chez Déterville, Paris

    Google Scholar 

  15. Dall SR, Giraldeau LA, Olsson O, McNamara JM, Stephens DW (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20(4):187–193. https://doi.org/10.1016/j.tree.2005.01.010

    Article  Google Scholar 

  16. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x

    Article  Google Scholar 

  17. Dayrat B, Conrad M, Balayan S, White TR, Albrecht C, Golding R et al (2011) Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): new insights from increased taxon sampling. Mol Phylogenet Evol 59:425–437. https://doi.org/10.1016/j.ympev.2011.02.014

    Article  PubMed  Google Scholar 

  18. Deshpande UD, Nagabhushanam R, Hanumante MM (1979) Reproductive ecology of the marine pulmonate, Onchidium verruculatum. Hydrobiologia 71:83–85

    Article  Google Scholar 

  19. Dimitrova M, Merilaita S (2009) Prey concealment: visual background complexity and prey contrast distribution. Behav Ecol 21(1):176–181. https://doi.org/10.1093/beheco/arp174

    Article  Google Scholar 

  20. Fontaneto D, Giordani I, Melone G, Serra M (2007) Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583(1):297–307. https://doi.org/10.1007/s10750-007-0573-1

    Article  Google Scholar 

  21. Golikov AN, Starobogatov YI (1972) Class Gastropoda. In: Mordukhai-Boltovskoi FD (ed) Guide to the fauna of the Black and Azov seas, vol 3. Naukova Dumka, Kiev, pp 65–166

    Google Scholar 

  22. Gotelli NJ (2004) A taxonomic wish-list for community ecology. Philos Trans R Soc Lond B 359:585–597. https://doi.org/10.1098/rstb.2003.1443

    Article  Google Scholar 

  23. Goulding TC, Khalil M, Tan SH, Dayrat B (2018) Integrative taxonomy of a new and highly-diverse genus of onchidiid slugs from the Coral Triangle (Gastropoda: Pulmonata: Onchidiidae). ZooKeys 763:1–111. https://doi.org/10.3897/zookeys.763.21252

    Article  Google Scholar 

  24. Jorger KM, Norenburg JL, Wilson NG, Schrodl M (2012) Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evol Biol 12:245. https://doi.org/10.1186/1471-2148-12-245

    Article  PubMed  PubMed Central  Google Scholar 

  25. Joseph S, Poriya P, Vakani B, Singh SP, Kundu R (2014) Identification of a group of cryptic marine limpet species, Cellana karachiensis (Mollusca: Patellogastropoda) off Veraval Coast, India, using mtDNA COI sequencing. Mitochondrial DNA A DNA Mapp Seq Anal 27(2):1328–1331. https://doi.org/10.3109/19401736.2014.945577

  26. Kaufman L, Rousseeuw PJ (1990) Partitioning around medoids (program pam). In: Finding groups in data: an introduction to cluster analysis. Wiley, Hoboken, pp 68–125

    Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Layton KKS, Gosliner TM, Wilson NG (2018) Flexible colour patterns obscure identification and mimicry in Indo-Pacific Chromodoris nudibranchs (Gastropoda: Chromodorididae). Mol Phylogenet Evol 124:27–36. https://doi.org/10.1016/j.ympev.2018.02.008

    Article  PubMed  Google Scholar 

  29. Lee CE, Frost BW (2002) Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia 480(1–3):111–128. https://doi.org/10.1023/A:1021293203512

    Article  CAS  Google Scholar 

  30. Linnaeus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edn. Laurentius Salvius, Stockholm

    Google Scholar 

  31. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2018) cluster: cluster analysis basics and extensions. R package version 2.0.7–1. https://cran.r-project.org/web/packages/cluster/. Accessed 5 Jun 2018

  32. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2[1]):209–220

    CAS  PubMed  Google Scholar 

  33. Mantel N, Valand RS (1970) A technique of nonparametric multivariate analysis. Biometrics 26(3):547–558

    Article  CAS  PubMed  Google Scholar 

  34. Miller SE, Hausmann A, Hallwachs W, Janzen DH (2016) Advancing taxonomy and bioinventories with DNA barcodes. Philos Trans R Soc Lond B 371:20150339. https://doi.org/10.1098/rstb.2015.0339

    Article  Google Scholar 

  35. Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci 98(11):6233–6240. https://doi.org/10.1073/pnas.101109298

    Article  CAS  PubMed  Google Scholar 

  36. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, … Wagner H (2018) vegan: Community Ecology Package. R package version 2.5–1. https://CRAN.R-project.org/package=vegant. Accessed 5 Jun 2018

  37. Pérez-Rodríguez L, Jovani R, Stevens M (2017) Shape matters: animal colour patterns as signals of individual quality. Proc R Soc Lond B Biol Sci 284(1849):20162446. https://doi.org/10.1098/rspb.2016.2446

    Article  Google Scholar 

  38. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 5 Jun 2018

  39. Rafinesque CS (1815) Analyse de la nature ou tableau de l’univers et des corps organisés. Palerme

  40. Ripley B (2018) tree: classification and regression trees. R package version 1.0–39. https://cran.r-project.org/web/packages/tree/index.html. Accessed 5 Jun 2018

  41. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PD (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci 105(34):12359–12364. https://doi.org/10.1073/pnas.0805319105

    Article  PubMed  Google Scholar 

  43. Spottiswoode CN, Stevens M (2010) Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs. Proc Natl Acad Sci 107(19):8672–8676. https://doi.org/10.1073/pnas.0910486107

    Article  PubMed  Google Scholar 

  44. Stoddard MC, Kilner RM, Town C (2014) Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat Commun 5:4117. https://doi.org/10.1038/ncomms5117

    Article  CAS  PubMed  Google Scholar 

  45. Troscianko J, Stevens M (2015) Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol Evol 6:1320–1331. https://doi.org/10.1111/2041-210X.12439

    Article  PubMed  PubMed Central  Google Scholar 

  46. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  47. Young CM, Greenwood PG, Powell CJ (1986) The ecological role of defensive secretions in the intertidal pulmonate Onchidella borealis. Biol Bull 171:391–404. https://doi.org/10.2307/1541681

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Roman Carrasco for his advice on statistics and the National Parks Board, Singapore for the permit (number NP/RP 15-088) under which the specimens were collected.

Funding

This study was funded by a Singapore Ministry of Education Academic Research Fund (MOE AcRF) Tier 1 Grant (R154-000-660-112) and by the National Research Foundation, Prime Minister’s Office, Singapore under its Marine Science R&D Programme (MSRDP-P03).

Author information

Affiliations

Authors

Contributions

I.Z.W.C. conceived and designed the experiment, performed image and data analysis and wrote the manuscript, including the preparation of the figures and tables. J.J.M.C. and D.H. conceived and designed the experiment, collected the specimens and performed genetic and morphological analyses and contributed to the final draft of the manuscript. P.A.T. conceived and designed the experiment and contributed to the final draft of the manuscript.

Corresponding author

Correspondence to Ian Z. W. Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies

The specimens were collected under a permit issued by the National Parks Board, Singapore (number NP/RP 15-088).

Data availability

The datasets and scripts used for all analyses are included in the “Electronic supplementary material” of the article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by V. Urgorri

Electronic supplementary material

ESM 1

(DOCX 1.49 mb)

ESM 2

(TXT 62 kb)

ESM 3

(TXT 14 kb)

ESM 4

(R 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chan, I.Z.W., Chang, J.J.M., Huang, D. et al. Colour pattern measurements successfully differentiate two cryptic Onchidiidae Rafinesque, 1815 species. Mar Biodiv 49, 1743–1750 (2019). https://doi.org/10.1007/s12526-019-00940-4

Download citation

Keywords

  • Peronia
  • Sensory ecology
  • PAT-GEOM
  • Integrative taxonomy
  • Pattern quantification