Advertisement

Marine Biodiversity

, Volume 48, Issue 2, pp 845–857 | Cite as

More diverse than expected: distributional patterns of Oecidiobranchus Hessler, 1970 (Isopoda, Asellota) on the Greenland-Iceland-Faeroe Ridge based on molecular markers

  • Robert M. Jennings
  • Saskia Brix
  • Simon Bober
  • Jörundur Svavarsson
  • Amy Driskell
Biodiversity of Icelandic Waters
  • 71 Downloads
Part of the following topical collections:
  1. Biodiversity of Icelandic Waters

Abstract

Oecidiobranchus (Isopoda, Asellota) is distinctive among asellote isopod genera in that most of its known species occur in the Nordic Seas and the Arctic Ocean. Some of these species are known only from a few specimens (i.e., poorly known). We used a combined morphological and genetic approach to evaluate the diversity of Oecidiobranchus species in this region. On the basis of genetics, at least three species were recognized, representing Oecidiobranchus cf. nanseni, Oecidiobranchus cf. plebejum, and a third, probably undescribed species. Oecidiobranchus cf. plebejum was found at several locations to the north of the large Greenland-Iceland-Faeroe Ridge, while O. cf. nanseni occurred on both sides of the ridge; temporal or spatial changes during and after the last ice age may have contributed to the genetic differences of populations on each side of the ridge. The wide distribution of the genus in the Nordic Seas and the Arctic Ocean suggests that the genus has been present there for an extensive period.

Keywords

Isopoda IceAGE GIF Ridge Circum-Icelandic distribution DNA barcoding Biogeography Population 

Notes

Acknowledgements

We would like to thank the crews of RV Metor and RV Poseidon for their important help and contribution. We wish to thank all pickers and sorters during the IceAGE expeditions for providing a unique set of specimens. Without the help of Karen Jeskulke, Sarah Schnurr, and Andrea Ormos, working so hard on producing high-quality PCR products at the Smithsonian, the whole work would have been much slower. We thank Anna M. Jażdżewska for help with the data and two anonymous reviewers whose suggestions improved the manuscript.

Funding information

This study was supported by the German Science Foundation under grant no. BR3843/6-1. This grant supported the travels of Robert Jennings and Saskia Brix within the American-German cooperation in the frame of the IceAGE project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Field study

Permits and approval of field or observational studies have been obtained by the authors, if applicable.

References

  1. Bober S, Riehl T, Henne S, Brandt A (2017) New Macrostylidae (Isopoda) from the Northwest Pacific Basin described by means of integrative taxonomy with reference to geographical barriers in the abyss. Zool J Linnean Soc 1–53.  https://doi.org/10.1093/zoolinnean/zlx042
  2. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ, Prlic A (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol 10(4):e1003537.  https://doi.org/10.1371/journal.pcbi.1003537 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brix S (2006) A new genus and new species of Desmosomatidae (Crustacea: Isopoda: Asellota) from the deep sea of south-eastern Australia. Mem Mus Vic 63(2):175–205CrossRefGoogle Scholar
  4. Brix S (2013) IceAGE - Icelandic marine Animals: Genetics and Ecology, Cruise No. POS456, IceAGE2, 20.07.2013 – 04.08.2013, Kiel (Germany) - Reykjavik (Iceland). Report published 2013 via Deutsche Zentrum für Marine Biodiversitätsforschung, Senckenberg am MeerGoogle Scholar
  5. Brix S, Meißner K, Stransky B, Halanych KM, Jennings RM, Kocot KM, Svavarsson J (2014a) The IceAGE project— a follow up of BIOICE. Polish Polar Res 35:141–150Google Scholar
  6. Brix S, Riehl T, Leese F (2011) First genetic data for species of the genus Haploniscus Richardson, 1908 (Isopoda: Asellota: Haploniscidae) from neighbouring deep-sea basins in the South Atlantic. Zootaxa 2838:79–84Google Scholar
  7. Brix S, Svavarsson J (2010) Distribution and diversity of desmosomatid and nannoniscid isopods (Crustacea) on the Greenland-Iceland-Faeroe Ridge. Polar Biol 33:515–530CrossRefGoogle Scholar
  8. Brix S, Svavarsson J, Leese F (2014b) A multi-gene analysis reveals multiple highly divergent lineages of the isopod Chelator insignis (Hansen, 1916) south of Iceland. Polish Polar Res 35:225–242.  https://doi.org/10.2478/popore-2014-0015 Google Scholar
  9. Brökeland W, Svavarsson J (2017) Distribution of haploniscids (Isopoda, Asellota, Haploniscidae) in Icelandic waters, with description of Haploniscus astraphes n. sp. from the Iceland basin and the Southeast Atlantic. Zootaxa 4231:301–326CrossRefGoogle Scholar
  10. Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22(17):4369–4383CrossRefPubMedGoogle Scholar
  11. Dahl E, Laubier L, Sibuet M, Strömberg J-O (1976) Some quantitative results on benthic communities of the deep Norwegian Sea. Astarte 9:61–79Google Scholar
  12. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v.5.4, Available from http://www.geneious.com
  13. Duman JG (2015) Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 218:1846–1855.  https://doi.org/10.1242/jeb.116905 CrossRefPubMedGoogle Scholar
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299PubMedGoogle Scholar
  15. Gubili C, Ross E, Billett DSM, Yool A, Tsairidis C, Ruhl HA, Rogacheva A, Masson D, Tyler PA, Hauton C (2017) Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep-Sea Res II 137:288–296CrossRefGoogle Scholar
  16. Guðmundsson G, von Schmalensee M, Svavarsson J (2000) Are foraminifers (Protozoa) important food for small isopods (Crustacea) in the deep-sea? Deep-Sea Res 47:2093–2109CrossRefGoogle Scholar
  17. Gurjanova E (1946) New species of Isopoda and Amphipoda from the Arctic Ocean. Compendium of results, Drifting Expedition, Icebreaker “Cedov”, 1937–1940. Moscow 3:272–297Google Scholar
  18. Hansen HJ (1916) Crustacea Malacostraca: the order Isopoda. Dan Ingolf Exped 3:1–262Google Scholar
  19. Hansen B, Østerhus S (2000) North Atlantic–Nordic Seas exchanges. Prog Oceanogr 45(2):109–208.  https://doi.org/10.1016/S0079-6611(99)00052-X CrossRefGoogle Scholar
  20. Hessler RR (1970) The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda Transect. Bull Scripps Inst Oceanogr 15:1–185Google Scholar
  21. Jennings RM, Etter RJ, Ficarra L (2013) Population differentiation and species formation in the deep sea: the potential role of environmental gradients and depth. PLoS One.  https://doi.org/10.1371/journal.pone.0077594
  22. Just J (1980) Polar Sea abyssal and deep bathyal Isopoda (Crustacea). Steenstrupia 6(14):197–230Google Scholar
  23. Kaiser S (2009) Nymphodora gen. nov., a new genus of Nannoniscidae Hansen, 1916 (Isopoda, Asellota, Janiroidea) from the high Arctic. Zootaxa 2096:371–380Google Scholar
  24. Kapli T, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T (2016) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33(11):1630–1638Google Scholar
  25. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kihara TC, Arbizu PM (2012) Three new species of Cerviniella Smirnov, 1946 (Copepoda: Harpacticoida) from the Arctic. Zootaxa 3345:1–33Google Scholar
  27. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  28. Kussakin OG (1999) Marine and brackish-water isopod crustaceans (Isopoda) of cold and temperate waters of the northern hemisphere. Vol. 3, Suborder Asellota, part 2. Families Joeropsididae, Nannoniscidae, Desmosomatidae, Macrostylidae. Opredeliteli po Faune, Izdavaemye Zoologicheskim Muzeem Akademii Nauk 169:1–384 (in Russian)Google Scholar
  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948CrossRefPubMedGoogle Scholar
  30. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol.  https://doi.org/10.1111/2041-210X.12410
  31. Logemann K, Olafsson J, Snorrason A, Valdimarsson H, Marteinsdottir G (2013) The circulation of Icelandic waters—a modelling study. Ocean Sci 9:931–955.  https://doi.org/10.5194/os-9-931-2013 CrossRefGoogle Scholar
  32. Malyutina MV, Kussakin OG (1996a) Addition to the Polar Sea bathyal and abyssal isopoda (Crustacea). Part 1. Anthuridea, Valvifera, Asellota (Ischnomesidae, Macrostylidae, Nannoniscidae). Zoosystem Rossica 4:49–62Google Scholar
  33. Malyutina MV, Kussakin OG (1996b) Additions to the Polar Sea bathyal and abyssal Isopoda (Crustacea, Malacostraca), Part 2. Asellota, Desmosomatidae. Zoosystem Rossica 4:239–260Google Scholar
  34. Michels J, Büntzow M (2010) Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. J Microsc 238:95–101CrossRefPubMedGoogle Scholar
  35. Michels J, Gorb SN (2012) Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J Microsc 245:1–16CrossRefPubMedGoogle Scholar
  36. Negoescu I, Svavarsson J (1997) Anthurideans (Crustacea, Isopoda) from the North Atlantic and the Arctic Ocean. Sarsia 82:159–202CrossRefGoogle Scholar
  37. Oug E, Bakken T, Kongsrud JA, Alvestad T (2017) Polychaetous annelids in the deep Nordic Seas: strong bathymetric gradients, low diversity and underdeveloped taxonomy. Deep-Sea Res II 137:102–112.  https://doi.org/10.1016/j.dsr2.2016.06.016 CrossRefGoogle Scholar
  38. Parapar J, Helgason GV, Jirkov I, Moreira J (2014) Diversity and taxonomy of Ampharetidae (Polychaeta) from Icelandic waters. Polish Polar Res 35:311–340.  https://doi.org/10.2478/popore-2014-0019 CrossRefGoogle Scholar
  39. Patton H, Hubbard A, Bradwell T, Schomacker A (2017) The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet. Earth Sci Rev 166:223–245.  https://doi.org/10.1016/j.earscirev.2017.02.001 CrossRefGoogle Scholar
  40. Perner K, Jennings AE, Moros M, Andrews JT, Wacker L (2016) Interaction between warm Atlantic-sourced waters and the East Greenland Current in northern Denmark Strait (68 degrees N) during the last 10 600 cal a BP. J Quaternary Sci 31:472–483.  https://doi.org/10.1002/jqs.2872 CrossRefGoogle Scholar
  41. Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, Duran D, Hazell S et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55(4):595–609.  https://doi.org/10.1080/10635150600852011 CrossRefPubMedGoogle Scholar
  42. Puillandre N, Lambert A, Brouillet S, Achaz G (2011) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21(8):1864–1877.  https://doi.org/10.1111/j.1365-294X.2011.05239.x CrossRefPubMedGoogle Scholar
  43. Rambaut A, Drummond AJ. (2014) Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer)
  44. Raupach MJ, Malyutina M, Brandt A, Wägele J-W (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea : Isopoda : Asellota) in the Southern Ocean. Deep-Sea Res II 54:1820–1830.  https://doi.org/10.1016/j.dsr2.2007.07.009 CrossRefGoogle Scholar
  45. Rex M, Etter RJ (2010) Deep-sea biodiversity. Harvard University Press, Cambridge, 354 ppGoogle Scholar
  46. Riehl T, Brenke N, Brix S, Driskell A, Kaiser S, Brandt A (2014) Field and laboratory methods for DNA studies on deep-sea isopod crustaceans. Polish Polar Res 35:205–226.  https://doi.org/10.2478/popore-2014-0018 CrossRefGoogle Scholar
  47. Rothlisberg PC, Pearcy WG (1977) An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fish Bull 74:994–997Google Scholar
  48. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  49. Schneider CA, Rasband WS, Eliceiri KW et al (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stefánsson U (1962) North Icelandic waters. Rit Fiskid 3:1–269Google Scholar
  51. Stuart CT, Rex MA (2009) Bathymetric patterns of deep-sea gastropod species diversity in 10 basins of the Atlantic Ocean and Norwegian Sea. Mar Ecol 30:164–180.  https://doi.org/10.1111/j.1439-0485.2008.00269.x CrossRefGoogle Scholar
  52. Svavarsson J (1988) Desmosomatidae (Isopoda, Asellota) from bathyal and abyssal depths in the Norwegian, Greenland, and North Polar Seas. Sarsia 73:1–32CrossRefGoogle Scholar
  53. Svavarsson J (1997) Diversity of isopods (Crustacea), new data from the Arctic and Atlantic Oceans. Biodivers Conserv 6:1571–1579CrossRefGoogle Scholar
  54. Svavarsson J, Brattegard T, Strömberg J-O (1990) Distribution and diversity patterns of asellote isopods (Crustacea, Isopoda) in the deep Norwegian and Greenland Seas. Prog Oceanogr 24:297–310CrossRefGoogle Scholar
  55. Svavarsson J, Strömberg JO, Brattegard T (1993) The deep-sea asellote (Isopoda, Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. J Biogeogr 20:537–555CrossRefGoogle Scholar
  56. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577.  https://doi.org/10.1080/10635150701472164 CrossRefPubMedGoogle Scholar
  57. Tsang LM, Chan BKK, Shih F-L, Chu KH, Chen AC (2009) Host-associated speciation in the coral barnacle Wanella milleporae (Cirripedia: Pyrgomatidae) inhabiting the Millepora coral. Mol Ecol 18:1463–1475CrossRefPubMedGoogle Scholar
  58. Weisshappel JB (2000) Distribution and diversity of the hyperbenthic amphipod family Eusiridae in the different seas around the Greenland-Iceland-Faeroe-Ridge. Sarsia 85:227–236CrossRefGoogle Scholar
  59. Weisshappel JB (2001) Distribution and diversity of the hyperbenthic amphipod family Calliopiidae in the different seas around the Greenland-Iceland-Faeroe-Ridge. Sarsia 86:143–151CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Robert M. Jennings
    • 1
  • Saskia Brix
    • 2
  • Simon Bober
    • 3
  • Jörundur Svavarsson
    • 4
  • Amy Driskell
    • 5
  1. 1.Biology DepartmentTemple UniversityPhiladelphiaUSA
  2. 2.Senckenberg am MeerGerman Centre for Marine Biodiversity Research (DZMB)HamburgGermany
  3. 3.Centre of Natural History (CeNak), Zoological MuseumUniversity of HamburgHamburgGermany
  4. 4.Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
  5. 5.Laboratories of Analytical Biology, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations