Skip to main content

Structure and composition of surgeonfish (Acanthuridae) and parrotfish (Labridae: Scarinae) assemblages in the south of the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico

Abstract

Herbivorous fish play an important role in structuring benthic communities by influencing the distribution and composition of algal assemblages in coral reef systems. The distribution of herbivorous fish is often driven by the interaction between the ecological and physiological capacities of the fish, as well as by physical attributes related to habitat characteristics. In Mexico, information on the condition of herbivorous fish populations is limited to fringing reefs in the Mexican Caribbean. This study evaluated the composition and structure of the surgeonfish and parrotfish at two depths on the leeward and windward sides of the reef in the south of the Parque Nacional Arrecife Alacranes, Southern Gulf of Mexico. Results revealed a robust and healthy herbivorous fish assemblage in terms of species richness, with high abundance and sizes up to 40% larger than the species reported in the Caribbean. The herbivorous fish abundance and biomass distribution were related to coral, bare substratum, coralline algae, turf, and rugosity. However, other physical or abiotic variables (e.g., wave intensity, sedimentation, and light penetration) could be playing an important complementary role of similar or greater importance, and could potentially influence the distribution of the herbivorous fish abundance and biomass. This study contributes to the knowledge of the composition and structure of the herbivorous fish assemblages in a reef system (Alacranes reef) with limited human access.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Acosta C, Barnes R, McClatchey R (2015) Spatial discordance in fish, coral, and sponge assemblages across a Caribbean atoll reef gradient. Mar Ecol 36:167–177. doi: https://doi.org/10.1111/maec.12129

  • Acosta-González G, Rodriguez-Zaragoza FA, Hernández-Landa RC, Arias-González JE (2013) Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition. PLoS One 8:e65665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam TC, Schmitt RJ, Holbrook SJ, Brooks AJ, Edmunds PJ, Carpenter RC, Bernardi G (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PLoS One 6:e23717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afeworki YA, Videler JJ, Bruggemann JH (2013) Seasonally changing habitat use patterns among roving herbivorous fishes in the southern Red Sea: the role of temperate and algal community structure. Coral Reefs 32:475–485

    Article  Google Scholar 

  • Aguilar-Perera A, Hernández-Landa RC (2017) The rainbow parrotfish (Scarus guacamaia) does not depend on mangroves as nursery habitats in the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Mar Biodivers 47:15–16. https://doi.org/10.1007/s12526-016-0491-4

    Article  Google Scholar 

  • Alvarez-Filip L, Gill JA, Dulvy NK et al (2011) Drivers of region-wide declines in architectural complexity on Caribbean reefs. Coral Reef 30:1051–1060

    Article  Google Scholar 

  • Anderson MJ, Gorely RN, Clarke KR (2008) PERMANOVA+Primer: guide to software and statistical methods. PRIMER-E Ltd., Plymouth

    Google Scholar 

  • Appeldoorn RS, Friedlander A, Nowlis JS, Usseglio P, Mitchell-Chui A (2003) Habitat connectivity in reef fish communities and marine reserve design in old providence-Santa Catalina, Colombia. Gulf Carib Res 14(2):61–77

    Google Scholar 

  • Ardisson HP, Duncan J, Aguirre L, Canela J (1996) Programa de manejo del Parque Marino Nacional Arrecife Alacranes, Yucatán, México. CINVESTAV-IPN, Mérida

    Google Scholar 

  • Arias-González JE, Fung T, Seymour RM et al (2017) A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLoS One 12(4):e0174855. https://doi.org/10.1371/journal.pone.0174855

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Arias-González JE, González-Gándara C, Cabrera JL, Christensen V (2011) Predicted impact of the invasive lionfish Pterois Volitans on the food web of a Caribbean coral reef. Environ Res 111:917–925

    Article  CAS  PubMed  Google Scholar 

  • Arnold SN, Steneck RS, Mumby PJ (2010) Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser 414:91–105

    Article  Google Scholar 

  • Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: decreasing resilience to rising sea-levels and climate change? Limnol Oceanography 53:2695–2701

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Bellwood DR, Wainwright PC (2001) Locomotion in labrid fishes: implications for habitat use and cross-shelf biogeography on the great barrier reef. Coral Reefs 20:139–150

    Article  Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 5–32

    Chapter  Google Scholar 

  • Bonaldo RM, Hoey AS, Bellwood DR (2014) The ecosystem roles of parrotfishes on tropical reefs. Oceanogr Mar Biol: Ann Rev 2014(52):81–132

    Article  Google Scholar 

  • Bonaldo RM, Pires MM, Guimarães PR, Junior HAS, Hay ME (2017) Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS One 12(1):e0170638. https://doi.org/10.1371/journal.pone.0170638

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bonet F (1967) Biogeología subsuperficial del arrecife Alacranes. Yucatán. Boletín (Universidad Nacional Autónoma de México. Instituto de Geología), México, pp 80

  • Bouchon-Navarro Y (1983) Distribution quantitative des principaux poissons herbivores (Acanthuridae et Scaridae) de l’atoll de Takapoto (Polyn_esie franc_aise). Journal de la Soci_et_edes oceanistes 77:43–54

    Article  Google Scholar 

  • Bouchon-Navarro Y, Harmelin-Vivien ML (1981) Quantitative distribution of herbivorous reef fishes in the Gulf of Aqaba (Red Sea). Mar Biol 63:79–86

    Article  Google Scholar 

  • Bruckner AW, Bruckner RJ (1998) Destruction of coral by Sparisoma viride. Coral Reefs 17, 350 only

  • Bruckner AW, Bruckner RJ (2003) Condition of coral reefs off less developed coastlines of Curaçao (part 2: reef fishes). Atoll Res Bull 496:394–402

    Article  Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sedimentingestión by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Article  Google Scholar 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci U S A 105:16201–11620

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS One 5:e8963. https://doi.org/10.1371/journal.pone.0008963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Carassou L, Leopold M, Guillemot N, Wantiez L, Kulbicki M (2013) Does herbivorous fish protection really improve coral reef resilience? A case study from New Caledonia (South Pacific). PLoS One 8(4):e60564. https://doi.org/10.1371/journal.pone.0060564

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chabanet P, Ralambondrainy H, Amanieu M, Faure G, Galzin R (1997) Relationships between coral reef substrata and fish. Coral Reefs 16:93–102

    Article  Google Scholar 

  • Chávez EA, Tunnell JW Jr, Whithers K (2007) Reef zonation and ecology: Veracruz shelf and Campeche Bank. In: Tunnell JW Jr, Chávez EA, Whithers K (eds) Coral reefs of the southern Gulf of Mexico. Texas A&M University Press, Corpus-Christi, pp 41–67

    Google Scholar 

  • Cheal AJ, MacNeil MA, Cripps E et al (2010) Coral macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the great barrier reef. Coral Reefs 29:1005–1015

    Article  Google Scholar 

  • Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs 1: dietary analyses. Mar Biol 140:613–623

    Article  CAS  Google Scholar 

  • Clements KD, Alfaro M, Fessler JL, Westneat MW (2004) Relationships of the temperate Australasian labrid fish tribe Odacini (Perciformes; Teleostei). Mol Phylo Evol 32:575–587

    Article  CAS  Google Scholar 

  • Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, van der Velde G (2002) Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Est Coast Shelf Sci 55:309–321

    Article  Google Scholar 

  • Comeros-Raynal MT, Choat JH, Polidoro BA, Clements KD, Abesamis R et al (2012) The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and Surgeonfishes. PLoS One 7(7):e39825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comisión Nacional de Áreas Naturales Protegidas (2000) Plan de Manejo de la Reserva de Banco Chinchorro (2000) 1a ed. Instituto Nacional de Ecología Av. Revolución 1425, Col. Tlacopac, México, D.F, 1–192

  • Comisión Nacional de Áreas Naturales Protegidas (2006) Programa de Conservación y Manejo Parque Nacional Arrecife Alacranes. 1a ed. Dirección General de Manejo para la Conservación, CONANP Camino al Ajusco No. 200, Col. Jardines en la Montaña, Tlalpan C.P. 14210, México, D. F, 1–173

  • De la Cruz-Agüero E, Martínez-Osegueda E and Muñoz-Chagín RF (1993) Propuesta de zonificaión del Arrecife Alacranes, Yucatán. CINVESTAV-IPN Unidad Mérida, 22

  • Debrot D, Choat JH, Posada JM, Robertson DR (2008) High densities of the large bodied parrotfishes (Scaridae) at two Venezuelan offshore reefs: comparison among four localities in the Caribbean. Proc Gulf Carib Fish Inst XX:335–338

  • Deschamps A, Desrochers A, Klomp KD (2003) A rapid assessment of the horseshoe reef, Tobago cays Marine Park, St. Vincent, West Indies (stony corals, algae and fishes). Atoll Res Bull 496:438–357

    Article  Google Scholar 

  • Díaz-Pérez L, Rodríguez-Zaragoza FA, Ortiz M et al (2016) Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS One 11(8):e0161812. https://doi.org/10.1371/journal.pone.0161812

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Done TJ (1982) Patterns in the distribution of coral communities across the central great barrier reef. Coral Reefs 1:95–107

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G (2006) Seagrass beds and mangroves as potential nurseries for the threatened indo-Pacific humphead wrasse, Cheilinus undulatus and Caribbean rainbow parrotfish, Scarus guacamaia. Biol Conserv 129:277–282

    Article  Google Scholar 

  • Edwards CB et al (2014) Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc R Soc B 281:20131835

    Article  CAS  PubMed  Google Scholar 

  • FAO (2002) Species identification guide for fishery purposes and american society of ichthyologists and herpetologists special publication no. 5. In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic. Volume 3: Bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO, Rome, pp 1375–2127

    Google Scholar 

  • FAO (2006) The State of World Fisheries and Aquaculture. FAO, Rome (also available at ftp://ftp.fao.org/docrep/fao/009/a0699e/a0699e.pdf), p 162

  • Ferreira CEL, Gasparini JL, Carvalho-Filho A, Floeter SR (2005) A recently extinct parrotfish species from Brazil. Coral Reefs 24:128 only

    Article  Google Scholar 

  • Ferreira CEL, Peret AC, Coutinho R (1998) Seasonal grazing rates and food processing by tropical herbivorous fishes. J Fish Biol 53:222–235

    Google Scholar 

  • Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59

    Article  Google Scholar 

  • Froese R and Pauly D (2016) Editors FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2016)

  • Fulton CJ, Bellwood DR (2004) Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Mar Biol 144:429–437

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef. Limnol Oceanog 50:255–264

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR, Wainwrigh PC (2001) The relationship between swimming ability and habitat use in wrasses (Labridae). Mar Biol 139:25–33

    Article  Google Scholar 

  • Genner MJ, SimS D, Southward W, Budd AJ, Masterson GC et al (2010) Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob Chang Biol 16:517–527

    Article  Google Scholar 

  • González-Gándara C, Arias-González JE (2001) Lista actualizada de los peces del arrecife Alacranes, Yucatán, México. Anales del Instituto de Biología de la Universidad Autónoma de México, Serie Zoología 72(2):245–248

    Google Scholar 

  • Gratwike B, Speight MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66(3):650–667

    Article  Google Scholar 

  • Gust N, Choat J, McCormick MI (2001) Spatial variability in reef fish distribution, abundance, size and biomass: a multi-scale analysis. Mar Ecol Prog Ser 214:237–251

    Article  Google Scholar 

  • Harborne AR, Mumby PJ, Micheli F et al (2006) The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. Advan Mar Biol 50:57–189

    Article  Google Scholar 

  • Hawkins LP, Roberts CM (2003) Effects of fishing on sex-changing Caribbean parrotfishes. Biol Conserv 115:213–226

    Article  Google Scholar 

  • Hawkins LP, Roberts CM (2004) Effects of artisanal fishing on Caribbean coral reefs. Conserv Biol 18:215–226

    Article  Google Scholar 

  • Hay ME, Goertemiller T (1983) Between-habitat differences in herbivore impact on Caribbean coral reefs. In: Reaka ML (ed) The ecology of deep and shallow coral reefs. Symposia series for undersea research, vol 1. Office of Undersea Research NOAA, Rockville, pp 97–102

    Google Scholar 

  • Hernández-Landa RC, Acosta-González G, Núñez-Lara E, Arias-González JE (2014) Spatial distribution of surgeonfish and parrotfish in the north sector of the Mesoamerican barrier reef system. Mar Ecol 36(3):432–446. https://doi.org/10.1111/maec.12152

    Article  Google Scholar 

  • Hildebrand HH, Chávez H, Compton H (1964) Aporte al conocimiento de los peces del arrecife Alacranes. Yucatán (México) Ciencie 23(3):107–134

    Google Scholar 

  • Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the great barrier reef. Coral Reefs 27:37

    Article  Google Scholar 

  • Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems. https://doi.org/10.1007/s10021-009-9291-z

  • Hoey AS, Bellwood DR (2011) Suppression of herbivory by macro algal density: a critical feedback on coral reefs? Ecol Lett 14:267–273

    Article  PubMed  Google Scholar 

  • Holbrook SJ, Schmitt RJ, Messmer V, Brooks AJ, Srinivasan M, Munday PL et al (2015) Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species. PLoS One 10(5):e0124054. https://doi.org/10.1371/journal.pone.0124054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hoshino K, Brandt M, Manfrino C et al (2003) Assessment of the coral reefs of the Turks and Caicos Islands (part 2: fish communities). Atoll Res Bull 496:480–498

    Article  Google Scholar 

  • Healthy Reefs Initiative (2015) 2015 Report Card for the Mesoamerican Reef. Available at: www.healthyreefs.org

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 275:1547–1551

    Article  Google Scholar 

  • Human P, DeLoach N (2006) Reef fish identification. New World Publications Inc, Florida, Caribbean, Bahamas, p 475

    Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Proceedings of the 8th International Coral Reef Symposium, Panama City: 97–106

  • Johansen JL, Bellwood DR, Fulton CJ (2008) Coral reef fishes exploit flow refuges in high-flow habitats. Mar Ecol Prog Ser 360:219–226

    Article  Google Scholar 

  • Kaufman L, Sandin S, Sala E, Obura D, Rohwer F (2011) Coral health index (CHI): measuring coral community health. Science and Knowledge Division, Conservation International, Arlington

    Google Scholar 

  • Klumpp DW, McKinnon AD (1989) Temporal and spatial patterns in primary production of a coral- reef epilithic algal community. J Exp Mar Biol Eco 131:1–22

    Article  Google Scholar 

  • Kopp D, Bouchon-Navaro Y, Louis M, Legendre P, Bouchon C (2012) Spatial and temporal variation in a Caribbean herbivorous fish assemblage. J Coast Res 28:63–72

    Article  Google Scholar 

  • Koslow JA, Hanley F, Wicklund R (1988) Effects of fishing on reef fish communities at Pedro Bank and port Royal Cays, Jamaica. Mar Ecol Prog Ser 43:201–212

    Article  Google Scholar 

  • Kramer PA, Mark KW, Turnbull TL (2003) Assessment of Andros Island reef system, Bahamas (part 2: fishes). Atoll Res Bull 496:100–121

    Article  Google Scholar 

  • Lang CJ (2003) Status of coral reefs in the Western Atlantic: results of initial surveys, Atlantic and Gulf Rapid Reef Assessment (AGRRA) Program. In: Lang CJ (ed) Atoll Research Bulletin 496, National Museum of Natural History, Smithsonian Institution, Washington (DC)

  • Lang CJ, Marks KW, Kramer PA, Kramer PR, Ginsburg RN (2010) AGRRA protocols version 5.4. http://www.agrra.org/training-tools/fish-training/

  • Lawson GL, Kramer DL, Hunte W (1999) Size-related habitat use and schooling behaviour in two species of surgeonfish (Acanthurus bahianus & A. coeruleus) on a fringing reef in Barbados, West Indies. Environ Biol Fish 54:19–33

    Article  Google Scholar 

  • Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Lewis SM (1986) The role of herbivorous fishes in the Organization of a Caribbean reef community. Ecol Monogr 56(3):183–200

    Article  Google Scholar 

  • Lewis SM, Wainwright PC (1985) Herbivore abundance and grazing intensity on a Caribbean coral reef. J Exp Mar Biol Ecol 87:215–228

    Article  Google Scholar 

  • Liceaga-Correa MA, Hernández-Núñez H (2000) Localización y dimensiones del Arrecife Alacranes. Jaina 11:8–10

    Google Scholar 

  • Lirman D (1994) Ontogenic shifts in habitat preferences in the three-spot damselfish, Stegastes Planifrons (Cuvier), in Roatan Island, Honduras. J Exp Mar Biol Ecol 180:71–81

    Article  Google Scholar 

  • Machemer EGP, Walter JF III, Serafy JE, Kerstetter DW (2012) Importance of mangrove shorelines for rainbow parrotfish Scarus Guacamaia: habitat suitability modeling in a subtropical bay. Aquat Biol 15:87–98

    Article  Google Scholar 

  • Mantyka CS, Bellwood DR (2007) Macroalgal grazing selectivity among herbivorous coral reef fishes. Mar Ecol Prog Ser 352:177–185

    Article  Google Scholar 

  • McAfee ST, Morgan SG (1996) Resource use by five sympatric parrotfshes in the san Blas archipelago, Panama. Mar Biol 125:427–437

    Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McClanahan TR (1997) Primary succession of coral-reef algae: differing patterns on fished versus unfished reefs. J Exp Mar Biol Ecol 218:77–102

    Article  Google Scholar 

  • McFarland WN, Brothers EB, Ogden JC, Shulman MJ, Bermingham E, Kotchian-Prentiss NM (1985) Recruitment patterns in young French grunts, Haemulon Flavolineatum (family Haemulidae), at St. Croix, Virgin Islands. Fish Bull 83:413–426

    Google Scholar 

  • Mellin C, Andréfouët S, Ponton D (2007) Spatial predictability of juvenile fish species richness and abundance in a coral reef environment. Coral Reefs 26:895–907

    Article  Google Scholar 

  • Mumby PJ (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–769

    Article  PubMed  Google Scholar 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV et al (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757):98–101. https://doi.org/10.1126/science.1121129

    CAS  Article  PubMed  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-González JE et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427(6974):533–536

    Article  CAS  PubMed  Google Scholar 

  • Nash KL, Abesamis RA, Graham NJ (2016a) Drivers of herbivory on coral reefs: species, habitat and management effects. Mar Ecol Prog Ser 554:129–140 2016

    Article  Google Scholar 

  • Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR (2016b) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J Appl Ecol 53:646–655

    Article  Google Scholar 

  • Nemeth M, Appeldoorn R (2009) The distribution of herbivorous coral reef fishes within fore-reef Hábitats: the role of depth, light and Rugosity. Carib J Sci 45:247–253

    Article  Google Scholar 

  • Núñez-Lara E, González-Salas C, Ruiz-Zarate MA, Hernández-Landa R, Arias-González EJ (2003) Condition of coral reef ecosystems in central-southern Quintana Roo (part 2: reef fish communities). Atoll Res Bull 496:338–359

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long- term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Parenti P, Randall JE (2011) Checklist of the species of the families Labridae and Scaridae: an update. Smith Bull 13:29–44

    Google Scholar 

  • Pauly D, Trites AW, Capuli E, Christensen V (1998) Diet composition and trophic levels of marine mammals. J Mar Sci 55:467–481

    Google Scholar 

  • Polunin NVC, Klumpp DW (1992) Drivers of herbivory on coral reefs: species, habitat and management effects. In Plant-animal interactions in the marine benthos. In: John DM et al (eds) Systematics association special volume 46. Oxford University Press, Oxford, pp 213–233

  • Posada JM, Villamizar E, Alvarado D (2003) Rapid assessment of coral reefs in the Archipiélago de Los Roques National Park, Venezuela (part 2: fishes). Atoll Res Bull 496:530–543

    Article  Google Scholar 

  • Price N (2010) Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163:747–758

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakitin A, Kramer DL (1996) Effect of a marine reserve on the distribution of coral reef fishes in Barbados. Mar Ecol Prog Ser 131:97

    Article  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr (Miami) 5:665–847

    Google Scholar 

  • Randall JE (2001) Surgeonfishes of Hawaii and the world. Mutual Publishing and Bishop Museum Press, Honolulu

    Google Scholar 

  • Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94(6):1347–1358

    Article  PubMed  PubMed Central  Google Scholar 

  • Ríos-Lara V, Salas S, Bello-Pineda J, Peniche-Ayora I (2007) Distribution patterns of spiny lobster (Panulirus Argus) at Alacranes reef, Yucatan: spatial analysis and inference of preferential habitat. Fish Res 87:35–45

    Article  Google Scholar 

  • Risk A (1998) The effects of interactions with reef residents on the settlement and subsequent persistence of ocean surgeonfish, Acanthurus Bahianus. Environ Biol Fish 51:377–389

    Article  Google Scholar 

  • Risk MJ (1972) Fish diversity on a coral reef in the Virgin Islands. Atoll Res Bull 193:1–6

    Article  Google Scholar 

  • Robertson DR (1988) Abundances of surgeonfishes on patch reefs in Caribbean, Panama: due to settlement, or postsettlement events? Mar Biol 97:495–501

    Article  Google Scholar 

  • Robertson DR, Polunin NVC, Leighton K (1979) The behavioural ecology of three Indian Ocean surgeonfishes (Acanthurus lineatus, A. leucosternon & Zebrasoma scopas): their feeding strategies, and social and mating systems. Environ Biol Fish 4:125–170

    Article  Google Scholar 

  • Robertson DR, Van Tassell J (2012). Fishes: Greater Caribbean. An Identification Guide to the shore-fish fauna of the Caribbean and adjacent areas. IOS App for iPhone

  • Rogers CS, Fitz HC, Gilnack M, Beets J, Hardin J (1984) Scleractinian coral recruitment at Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Coral Reefs 3:69–67

    Article  Google Scholar 

  • Rotjan RD, Lewis SM (2006) Parrofish abundance and selective corallivory on a Belizean coral reef. J Exp Mar Biol Ecol 335:292–301

    Article  Google Scholar 

  • Rotjan RD, Lewis SM (2008) The impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91

    Article  Google Scholar 

  • Russ G (1984a) Distribution and abundance of herbivorous grazing fishes in the central great barrier reef. I. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34

    Article  Google Scholar 

  • Russ G (1984b) Distribution and abundance of herbivorous grazing fishes in the central great barrier reef. II. Patterns of zonation of mid-shelf and outer shelf reefs. Mar Ecol Prog Ser 20:35–44

    Article  Google Scholar 

  • Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22(1):63–67

    Google Scholar 

  • Russ GR, Questel S-LA, Rizzari JR, Alcala AC (2015) The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar Biol. https://doi.org/10.1007/s00227-015-2728-3

  • Sale PF (1991) Introduction. In: Sale PF (ed) The ecology of fishes on coral reefs San Diego. Academic Press, Inc., California, pp 3–15

    Chapter  Google Scholar 

  • Sleeman JC, Boggs GS, Radford BC, Kendrick GA (2005) Using agent-based models to aid reef restoration: enhancing coral cover and topographic complexity through the spatial arrangement of coral transplants. Restor Ecol 13(4):685–694

    Article  Google Scholar 

  • Sluka RD, Miller M (2001) Herbivorous fish assemblages and herbivory pressure on Laamu atoll, Republic of Maldives. Coral Reefs 20:255–226

    Article  Google Scholar 

  • Stockwell B, Jadloc CRL, Abesamis RA, Alcala AC, Russ GR (2009) Trophic and benthic responses to no-take marine reserve protection in the Philippines. Mar Ecol Prog Ser 389:1–15

    Article  Google Scholar 

  • Suchley A, McField MD, Alvarez-Filip L (2016) Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. Peer J 4:e2084. https://doi.org/10.7717/peerj.2084

    Article  PubMed  Google Scholar 

  • Taylor BM, Lindfield JS, Choat HC (2015) Hierarchical and scale-dependent effects of fishing pressure and environment on the structure and size distribution of parrotfish communities. Ecography 38:520–530

    Article  Google Scholar 

  • Tolimieri N (1995) Effects of microhabitat characteristics on the settlement and recruitment of a coral reef fish at two spatial scales. Oecologia 102:52–63

    Article  CAS  PubMed  Google Scholar 

  • Toller W, Debrot AO, Vermeij MJA, Hoetjes PC (2010) Reef fishes of SAtra Bank, Netherlands Antilles: assemblage structure across a gradient of Hábitat types. PLoS One 5(5):e9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tootell JS, Steele MA (2016) Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181:13–24

    Article  PubMed  Google Scholar 

  • Tzadik OE, Appeldoorn RS (2013) Reef structure drives parrotfish species composition on shelf edge reefs in la Parguera, Puerto Rico. Cont Shelf Res 54:14–23

    Article  Google Scholar 

  • Vallès H, Gill D, Oxenford HA (2015) Parrotfish size as a useful indicator of fishing effects in a small Caribbean island. Coral Reefs 34:789–801

    Article  Google Scholar 

  • Vallès H, Oxenfrod HA (2014) Parrotfish size: a simple yet useful alternative indicator of fishing effects on Caribbean reefs? PLoS One 9(1):e86291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent IV, Hincksman CM, Tibbetts IR, Harris A (2011) Biomass and abundance of herbivorous fishes on coral reefs off Andavadoaka, western Madagascar. Western Indian Ocean J Mar Sci 10:83–99

    Google Scholar 

  • Wantiez L, Thollot P, Kublicki M (1997) Effects of marine reserves on coral reef fish communities from five islands in New Caledonia. Coral Reefs 16:215–224

    Article  Google Scholar 

  • Warwick RM, Clarke KR (1993) Comparing the severity of disturbance: a meta-analysis of marine macrobenthlc community data. Mar Ecol Prog Ser 92:221–231

    Article  Google Scholar 

  • Webb PW (2004) Response latencies to postural disturbances in three species of teleostean fishes. J Exp Biol 207:955–961

    Article  PubMed  Google Scholar 

  • Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390

    Article  PubMed  Google Scholar 

  • Williams DMB, Hatcher AI (1983) Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the great barrier reef. Mar Ecol Prog Ser 10:239–250

    Article  Google Scholar 

  • Williams LD, Polunin NVC (2001) Large- scale associations between macro algal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs 19:358–366

    Article  Google Scholar 

  • Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the great barrier reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Fourth edition. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the PhD scholarship awarded on behalf of CONACyT: Estancias Posdoctorales Vinculadas al Fortalecimiento de la Calidad del Posgrado Nacional, 2015 (1) and 2016 (2), and the Posgrado Institucional en Ciencias Agropecuarias y Manejo de Recursos Naturales Tropicales of the UADY, where the postdoctoral research was carried out. We thank the Parque Nacional Arrecife Alacranes and the park wardens, in particular captain Ignacio Sobrino. Thanks also to MSc Luis Quijano Puerto for support in the field, and to the anonymous reviewers of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Hernández-Landa.

Additional information

Communicated by R. Thiel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández-Landa, R.C., Aguilar-Perera, A. Structure and composition of surgeonfish (Acanthuridae) and parrotfish (Labridae: Scarinae) assemblages in the south of the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Mar Biodiv 49, 647–662 (2019). https://doi.org/10.1007/s12526-017-0841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0841-x

Keywords

  • Scarus
  • Sparisoma
  • Acanthurus
  • Yucatan Peninsula
  • Reef fish