Deciphering demographic history and fine-scale population structure of cobia, Rachycentron canadum (Pisces: Rachycentridae) using microsatellite and mitochondrial markers

  • P. R. Divya
  • Joy Linu
  • C. Mohitha
  • A. Kathirvelpandian
  • P. Manoj
  • V. S. Basheer
  • A. Gopalakrishnan
Original Paper
  • 12 Downloads

Abstract

Cobia, Rachycentron canadum is a candidate species for aquaculture, distributed across the Indo-Pacific waters to the southern Atlantic Ocean. Information on genetic diversity and population structure of cobia is crucial for sustainable utilization and management of the species in natural waters. In the present study, we used 14 polymorphic microsatellite loci and mitochondrial cytochrome b gene (980 bp) to investigate the genetic diversity and population structuring of R. canadum along the Indian coast. Microsatellite analysis suggests a relatively high level of genetic diversity of cobia in the Indian region, with a mean Ho and He of 0.76 and 0.73. The PIC was also highly informative (0.841), with a mean no. of alleles of 11.304. Hierarchical AMOVA and genetic differentiation co-efficient between the populations was found to be low, but significant (FST = 0.035, P < 0.001), indicating fine scale structuring in the region. Pair-wise FST, neighbor-joining tree, principal coordinates analysis, and Bayesian analysis depict three populations of cobia in Indian waters: two in the Arabian Sea and one in the Bay of Bengal. The mitochondrial gene analyses showed discordant findings in comparison with microsatellite markers. However, both the markers yielded no inference of historical demographic bottleneck. Multi-modal mismatch distributions and ragged index, non-significant Tajima’s D and Fu’s FS, and L-shaped distribution pattern of the allele frequencies, indicated the lack of bottleneck events of the species in the recent past. Based on mitochondrial gene analysis, the population expansion was inferred to have occurred 0.046 Myrs ago, corresponding to the late Pleistocene.

Keywords

Cobia Microsatellites Cyt b Population genetic structure FST Demography 

Notes

Acknowledgements

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper. We gratefully acknowledge the financial support by the Department of Biotechnology, Government of India, New Delhi, and facilities provided by the Indian Council of Agricultural Research, New Delhi.

Supplementary material

12526_2017_817_MOESM1_ESM.doc (42 kb)
Table S1(DOC 42 kb)

References

  1. Aguila RD, Perez SKL, Catacutan BJN, Lopez GV, Barut NC, Santos MD (2015) Distinct yellowfin tuna (Thunnus albacares) stocks detected in Western and Central Pacific Ocean (WCPO) using DNA microsatellites. PLoS One 10:e0138292Google Scholar
  2. Aliabadi MS, Gilkolaei SR, Savari A, Zolgharnein H, Nabavi SMB (2008) Microsatellite polymorphism in Iranian populations of cobia (Rachycentron canadum). Biotechnology 7:775–780CrossRefGoogle Scholar
  3. Avise JC (1994) Speciation and hybridization. In: Molecular markers, natural history and evolution. Springer, New York, pp 252–305CrossRefGoogle Scholar
  4. Avise JC (1998) Conservation genetics in the marine realm. J Hered 89:377–382CrossRefGoogle Scholar
  5. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge MAGoogle Scholar
  6. Bentzen P, Taggart CT, Ruzzante DE, Cook D (1996) Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can J Fish Aquat Sci 53:2706–2721CrossRefGoogle Scholar
  7. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  8. Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci 76:1967–1971CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10:1179–1196CrossRefPubMedGoogle Scholar
  10. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  11. Darden TL, Walker MJ, Brenkert K, Yost JR, Denson MR (2014) Population genetics of cobia (Rachycentron canadum): implications for fishery management along the coast of the southeastern United States. Fish Bull 112:24–35CrossRefGoogle Scholar
  12. Divya PR, Gopalakrishnan A, Basheer VS, Swaminathan R, Mohitha C, Joy L, Kumar R, Manoj P, Jena JK (2015) Mitochondrial ATPase 6/8 genes to infer the population genetic structure of silver pomfret fish Pampus argenteus along the Indian waters. Mitochondrial DNA 26:189–194CrossRefPubMedGoogle Scholar
  13. Durand JD, Collet A, Chow S, Guinand B, Borsa P (2005) Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol 147:313–322Google Scholar
  14. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  17. Fischer AS (1997) Arabian Sea mixed layer deepening during the monsoon: observations and dynamics. Doctoral dissertation, Massachusetts Institute of Technology and Woods Hole Oceanographic InstitutionGoogle Scholar
  18. Franks JS, Zuber MH, McIlwain TD (1991) Trends in seasonal movements of cobia, Rachycentron canadum, tagged and released in the northern Gulf of Mexico. J Miss Acad Sci 36:55Google Scholar
  19. Froese R, Pauly D (2000) FishBase 2000: concepts designs and data sources, vol 1594. WorldFish, PenangGoogle Scholar
  20. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  21. Ganga U, Pillai NGK, Akhilesh KV, Rajool SCP, Beni N, Manjebrayakath H, Prakasan D (2012) Population dynamics of cobia Rachycentron canadum (Linnaeus, 1766) off cochin coast, south-eastern Arabian Sea. Indian J Fish 59:19–24Google Scholar
  22. Gariboldi MC, Túnez JI, Failla M, Hevia M, Panebianco MV, Paso Viola MN, Vitullo AD, Cappozzo HL (2016) Patterns of population structure at microsatellite and mitochondrial DNA markers in the franciscana dolphin (Pontoporia blainvillei). Ecol Evol 6:8764–8776CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gold JR, Giresi MM, Renshaw MA, Gwo JC (2013) Population genetic comparisons among cobia from the northern Gulf of Mexico, US western Atlantic, and Southeast Asia. N Am J Aquac 75:57–63CrossRefGoogle Scholar
  24. Gopakumar G, Nazar AA, Tamilmani G, Sakthivel M, Kalidas C, Ramamoorthy N, Palanichamy S, Maharshi VA, Rao KS, Rao GS (2011) Broodstock development and controlled breeding of cobia Rachycentron canadum (Linnaeus 1766) from Indian seas. Indian J Fish 58:27–32Google Scholar
  25. Gopalakrishnan A, Musammilu KK, Basheer VS, John L, Padmakumar KG, Lal KK, Mohindra V, Punia P, Dinesh K, Manjebrayakath H, Ponniah AG (2009) Low genetic differentiation in the populations of the Malabar carp Labeo dussumieri as revealed by allozymes, microsatellites and RAPD. Asian Fish Sci 22:359–391Google Scholar
  26. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  27. Habib M, Lakra WS, Mohindra V, Khare P, Barman AS, Singh A, Lal KK, Punia P, Khan AA (2011) Evaluation of cytochrome b mtDNA sequences in genetic diversity studies of Channa marulius (Channidae: Perciformes). Mol Biol Rep 38:841–846CrossRefPubMedGoogle Scholar
  28. Haffray P, Malha R, Sidi MOT, Prista N, Hassan M, Castelnaud G, Karahan-Nomm B, Gamsiz K, Sadek S, Bruant JS, Balma P (2012) Very high genetic fragmentation in a large marine fish, the meagre Argyrosomus Regius (Sciaenidae, Perciformes): impact of reproductive migration, oceanographic barriers and ecological factors. Aquat Living Resour 25:173–183CrossRefGoogle Scholar
  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  30. Hammond DL (2001) Status of the South Carolina fisheries for cobia. SC Mar. Res. Tech. Rep.No. 83. South Carolina State Documents Depository, Columbia SCGoogle Scholar
  31. Hansen MM, Meier K, Mensberg KLD (2010) Identifying footprints of selection in stocked brown trout populations: a spatio-temporal approach. Mol Ecol 19:1787–1800CrossRefPubMedGoogle Scholar
  32. Hartl DL, Clark AG, Clark AG (1997) Principles of population genetics, vol 116. Sinauer Associates, Sunderland MAGoogle Scholar
  33. Hauser L, Ward RD (1998) Population identification in pelagic fish: the limits of molecular markers. In: Carvalho GR (ed.) Advances in molecular ecology. IOS Press, Amsterdam, pp 191–224Google Scholar
  34. Hsu KC, Shih NT, Ni IH, Shao KT (2007) Genetic variation in Trichiurus lepturus (Perciformes: Trichiuridae) in waters off Taiwan: several species or cohort contribution. Raffles Bull Zool 14:215–220Google Scholar
  35. Joy L, Mohitha C, Divya PR, Gopalakrishnan A, Basheer VS, Jena JK (2016) Weak genetic differentiation in cobia, Rachycentron Canadum from Indian waters as inferred from mitochondrial DNA ATPase 6 and 8 genes. Mitochondrial DNA Part A 27:2819–2821Google Scholar
  36. Kalinowski ST (2009) How well do evolutionary trees describe genetic relationships among populations? Heredity 102:506–513CrossRefPubMedGoogle Scholar
  37. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  38. Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729CrossRefPubMedGoogle Scholar
  39. Kathirvelpandian A, Gopalakrishnan A, Lakra WS, Krishna G, Sharma R, Musammilu KK, Basheer VS, Jena JK (2014) Microsatellite markers to determine population genetic structure in the golden anchovy, Coilia dussumieri. Biochem Genet 52:296–309CrossRefPubMedGoogle Scholar
  40. Khedkar GD, Reddy AC, Ron TB, Haymer D (2013) High levels of genetic diversity in Penaeus monodon populations from the east coast of India. SpringerPlus 2:671CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kumar R, Gopalakrishnan A, Divya PR, Basheer VS, Singh RK, Mohindra V, Lal KK, Jena JK (2016) Population genetic structure of Macrobrachium Rosenbergii (Palaemonidae) from Indian waters using mitochondrial ATPase 6/8 gene. Mitochondrial DNA Part A 28(4):602–605Google Scholar
  42. Lal KK, Chauhan T, Mandal A, Singh RK, Khulbe L, Ponniah AG, Mohindra V (2004) Identification of microsatellite DNA markers for population structure analysis in Indian major carp, Cirrhinus mrigala (Hamilton-Buchanan, 1882). J Appl Ichthyol 20:87–91CrossRefGoogle Scholar
  43. Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  44. Liao IC, Huang TS, Tsai WS, Hsueh CM, Chang SL, Leaño EM (2004) Cobia culture in Taiwan: current status and problems. Aquaculture 237:155–165CrossRefGoogle Scholar
  45. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  46. Liu BJ, Zhang BD, Xue DX, Gao TX, Liu JX (2016) Population structure and adaptive divergence in a high gene flow marine fish: the small yellow Croaker (Larimichthys polyactis). PLoS One 11:e0154020CrossRefPubMedPubMedCentralGoogle Scholar
  47. Loka J, Philipose KK, Vaidya NG, Sonali SM, Dube P (2016) Variations in growth rates of cage cultured Asian seabass Lates calcarifer (Bloch, 1790) and cobia Rachycentron canadum (Linnaeus, 1766) in relation to environmental quality of marine farm at Karwar, India. Indian J Fish 61:140–145Google Scholar
  48. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  49. Lundy CJ, Moran P, Rico C, Milner RS, Hewitt GM (1999) Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish. Mol Ecol 8:1889–1898CrossRefPubMedGoogle Scholar
  50. McLean J, Taylor E (2001) Resolution of population structure in a species with high gene flow: microsatellite variation in the eulachon (Osmeridae: Thaleichthys pacificus). Mar Biol 139:411–420CrossRefGoogle Scholar
  51. Nazar AA, Jayakumar R, Tamilmani G, Sakthivel M (2014) Sea cage farming of cobia. DOI:10.13140/RG.2.1.4475.6722Google Scholar
  52. Norouzi M, Pourkazemi M (2008) Population genetic structure of Stellate sturgeon (Acipenser Stellatus Pallas, 1771) in the South Caspian Sea using microsatellite markers. J Fish Aquat Sci 3:158–166CrossRefGoogle Scholar
  53. O’Leary SJ, Feldheim KA, Fields AT, Natanson LJ, Wintner S, Hussey N, Shivji MS, Chapman DD (2015) Genetic diversity of white sharks, Carcharodon carcharias, in the Northwest Atlantic and southern Africa. J Hered 106:258–265CrossRefPubMedGoogle Scholar
  54. O'connell M, Dillon MC, Wright JM, Bentzen P, Merkouris S, Seeb J (1998) Genetic structuring among Alaskan Pacific herring populations identified using microsatellite variation. J Fish Bio 53:150–163CrossRefGoogle Scholar
  55. O'Connell M, Wright JM (1997) Microsatellite DNA in fishes. Rev Fish Biol Fish 7:331–363Google Scholar
  56. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295Google Scholar
  57. Phinchongsakuldit J, Chaipakdee P, Collins JF, Jaroensutasinee M, Brookfield JF (2013) Population genetics of cobia (Rachycentron canadum) in the Gulf of Thailand and Andaman Sea: fisheries management implications. Aquac Int 21:197–217CrossRefGoogle Scholar
  58. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size suing allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  59. Prasannakumar S, Madhupratap M, Dileepkumar M, Muraleedharan PM, SN DS, Gauns M, VVSS S (2001) High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection. Curr Sci 81:1633–1638Google Scholar
  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  61. Rabone M, Lavery SD, Little A, Clements KD (2015) Discordance between nuclear and mitochondrial DNA analyses of population structure in closely related triplefin fishes (Forsterygion lapillum and F. capito, F. Tripterygiidae) supports speciation with gene flow. Mar Biol 162:1611–1624CrossRefGoogle Scholar
  62. Rambaut A (2009) FIGTREE. v. 1.4.0 ed. See http://www.tree.bio.ed.ac.uk/software/figure/
  63. Renshaw MA, Pruett CL, Saillant E, Patton JC, Rexroad CE, Gold JR (2005) Microsatellite markers for cobia, Rachycentron canadum. Gulf Mex Sci 23:248Google Scholar
  64. RGCA (2015) Rajiv Gandhi Centre for Aquaculture. Annual Report 2014–2015. 57 pagesGoogle Scholar
  65. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  66. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  67. Ruzzante DE, Mariani S, Bekkevold D, André C, Mosegaard H, Clausen LA, Dahlgren TG, Hutchinson WF, Hatfield EM, Torstensen E, Brigham J (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc R Soc Lond B Biol Sci 273:1459–1464CrossRefGoogle Scholar
  68. Sajeevan MK, Kurup BM (2016) Stock assessment of cobia Rachycentron canadum (Linnaeus, 1766) occurring in the North West coast of India. IJMS 45(3)Google Scholar
  69. Salari MA, Gilkolaei SR, Savari A, Zolgharnein H, Nabavi B, Mohammad S (2009) Population genetic structure of cobia, Rachycentron canadum revealed by microsatellite markers. JABS 3:1Google Scholar
  70. Shaffer RV, Nakamura EL (1989) Synopsis of biological data on the cobia Rachycentron canadum (Pisces: Rachycentridae). NOAA technical report NMFS 82, FAO fisheries synopsis 153. National Marine Fisheries Service, Seattle, 21 ppGoogle Scholar
  71. Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8:407–417CrossRefGoogle Scholar
  72. Stelkens RB, Jaffuel G, Escher M, Wedekind C (2012) Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol Ecol 21:2896–2915CrossRefPubMedGoogle Scholar
  73. Sun P, Shi Z, Yin F, Peng S (2012) Population genetic structure and demographic history of Pampus argenteus in the indo-West Pacific inferred from mitochondrial cytochrome b sequences. Biochem Syst Ecol 43:54–63CrossRefGoogle Scholar
  74. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  75. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:725–2729CrossRefGoogle Scholar
  76. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic markers. Nucleic Acids Res 17:6463–6471CrossRefPubMedPubMedCentralGoogle Scholar
  77. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  78. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201CrossRefGoogle Scholar
  79. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. J Fish Biol 44:213–232CrossRefGoogle Scholar
  80. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedPubMedCentralGoogle Scholar
  81. Weir BS, Cockerham CC (1984) Estimation of F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  82. Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol 13:1785–1798CrossRefPubMedGoogle Scholar
  83. Zhou QC, Wu ZH, Tan BP, Chi SY, Yang QH (2006) Optimal dietary methionine requirement for juvenile cobia (Rachycentron canadum). Aquaculture 258:551–557CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • P. R. Divya
    • 1
  • Joy Linu
    • 1
  • C. Mohitha
    • 1
  • A. Kathirvelpandian
    • 1
  • P. Manoj
    • 2
  • V. S. Basheer
    • 1
  • A. Gopalakrishnan
    • 3
  1. 1.Peninsular and Marine Fish Genetic Resources CentreNBFGR, CMFRI CampusCochinIndia
  2. 2.Rajiv Gandhi Centre for BiotechnologyTrivandrumIndia
  3. 3.Central Marine Fisheries Research InstituteCochinIndia

Personalised recommendations