Skip to main content

Advertisement

Log in

Diversity of two widespread Indo-Pacific demosponge species revisited

  • Red Sea Biodiversity
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The Indo-Pacific is the world’s largest marine biogeographic region, covering the tropical and subtropical waters from the Red Sea in the Western Indian Ocean to the Easter Islands in the Pacific. It is characterized by a vast degree of biogeographic connectivity in particular in its marine realm. So far, usage of molecular tools rejected the presence of cosmopolitan or very widespread sponge species in several cases, supporting hypotheses on a higher level of endemism among marine invertebrates than previously thought. We analysed the genetic diversity of Hyrtios erectus and Stylissa massa, two alleged widespread sponge species of the Indo-Pacific, from the Red Sea and Mayotte in the West Indian Ocean to Polynesia in the Central Pacific. In the region of its type locality, the Red Sea, Hyrtios erectus is genetically distinct, and the populations from the remaining Indo-Pacific are a potentially different species and paraphyletic in respect to H. altus. Stylissa massa falls into different, but widespread genetic clades, one of them (Stylissa cf. massa), with distinct potentially hairpin-forming elements in mitochondrial intergenic regions. The results also indicate that morphologically established demosponge species in the Indo-Pacific can be widespread, but simultaneously harbour cryptic, genetically distinct lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul Wahab MA, Fromont J, Whalan S et al (2014) Combining morphometrics with molecular taxonomy: how different are similar foliose keratose sponges from the Australian tropics? Mol Phylogenet Evol 73:23–39

    Article  CAS  PubMed  Google Scholar 

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  • Bailey G (2010) The Red Sea, coastal landscapes, and hominin dispersals. In: Petraglia MD, Rose JI (eds) The Evolution of Human Populations in Arabia. Springer, Netherlands, pp 15–37

    Chapter  Google Scholar 

  • Barnes DKA, Bell JJ (2002) Coastal sponge communities of the West Indian Ocean: taxonomic affinities, richness and diversity. Afr J Ecol 40:337–349

    Article  Google Scholar 

  • Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353

    Article  Google Scholar 

  • Bierne N, Bonhomme F, David N (2003) Habitat preference and the marine-speciation paradox. Proc R Soc Lon, Biol Sci 270:1399–1406

    Article  Google Scholar 

  • Briggs JC (1987) Biogeography and Plate Tectonics. Elsevier Science

  • Carballo JL, Aguilar-Camacho JM, Knapp IS, Bell JJ (2013) Wide distributional range of marine sponges along the Pacific Ocean. Mar Biol Res 9:768–775

    Article  Google Scholar 

  • Carter HJ (1887) Report on the marine sponges, chiefly from King Island in the Mergui archipelago, collected for the trustees of the Indian museum, Calcutta, by Dr. John Anderson, FRS, superintendent of the museum. J Linnean Soc Lon, Zool 21:61–84

    Article  Google Scholar 

  • Cleary DFR, de Voogd NJ, Polónia ARM et al (2015) Composition and predictive functional analysis of bacterial communities in seawater, sediment and sponges in the Spermonde archipelago, Indonesia. Microb Ecol 70:889–903

    Article  CAS  PubMed  Google Scholar 

  • Cox CB, Moore PD (2000) Biogeography: An Ecological and Evolutionary Approach. Blackwell Science

  • de Monte Lamarck JBP (1815) Suite des polypiers empâtés. Mémoirs du Muséum d’Histoire naturelle. Paris 1:69–80 162–168, 331–340

    Google Scholar 

  • DiBattista J, Berumen ML, Gaither MR et al (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40:1170–1181

    Article  Google Scholar 

  • DiBattista J, Howard Choat J, Gaither MR et al (2016) On the origin of endemic species in the Red Sea. J Biogeogr 43:13–30

    Article  Google Scholar 

  • Erpenbeck D, Voigt O, Gültas M, Wörheide G (2008) The sponge genetree server-providing a phylogenetic backbone for poriferan evolutionary studies. Zootaxa 1939:58–60

    Google Scholar 

  • Erpenbeck D, Voigt O, Wörheide G, Lavrov DV (2009) The mitochondrial genomes of sponges provide evidence for multiple invasions by repetitive hairpin-forming elements (RHE). BMC Genomics 10:591

    Article  PubMed  PubMed Central  Google Scholar 

  • Erpenbeck D, Hooper J, Bonnard I et al (2012a) Evolution, radiation and chemotaxonomy of Lamellodysidea, a demosponge genus with anti-plasmodial metabolites. Mar Biol 159:1119–1127

    Article  CAS  Google Scholar 

  • Erpenbeck D, Sutcliffe P, de SC C et al (2012b) Horny sponges and their affairs: on the phylogenetic relationships of keratose sponges. Mol Phylogenet Evol 63:809–816

    Article  PubMed  Google Scholar 

  • Erpenbeck D, Ekins M, Enghuber N et al (2016a) Nothing in (sponge) biology makes sense – except when based on holotypes. J Mar Biol Ass 96:305–311

    Article  Google Scholar 

  • Erpenbeck D, Voigt O, Al-Aidaroos AM et al (2016b) Molecular biodiversity of Red Sea demosponges. Mar Pollut Bull 105:507–514

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Francis WR, Eitel M, Vargas S et al (2016) Mitochondrial genomes of the freshwater sponges Spongilla lacustris and Ephydatia Cf. muelleri. Mitochondrial DNA Part B 1:250–251

    Article  Google Scholar 

  • Gordon AL (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography 18:15–27

    Google Scholar 

  • Gordon AL, Fine RA (1996) Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature 379:146–149

    Article  CAS  Google Scholar 

  • Hooper JNA (2000) Sponguide: guide to sponge collection and identification. Queensland Museum. 26 pp. Downloadable from: www.southbank.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Sea+Life/Sponges/~/media/EC746F1940824D6BB350092FD8CAF53A.ashx

  • Hooper JNA, Lévi C (1994) Biogeography of indo-west Pacific sponges: Microcionidae, Raspailidae, Axinellidae. In: Van Soest RWM, Van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 191–212

    Google Scholar 

  • Hooper JNA, Hall KA, Ekins M et al (2013) Managing and sharing the escalating number of sponge “unknowns”: the SpongeMaps project. Integr Comp Biol 53:473–481

    Article  CAS  PubMed  Google Scholar 

  • Imešek M, Pleše B, Lukić-Bilela L et al (2012) Mitochondrial genomes of the genus Ephydatia Lamouroux, 1816: can palindromic elements be used in species-level studies? Org Divers Evol 13:127–134

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller C (1889) Die Spongienfauna des Rothen Meeres. I Hälfte Zeitschrift für Wissenschaftliche Zoologie 48:311–406

    Google Scholar 

  • Kelly Borges M, Robinson EV, Gunasekera SP et al (1994) Species differentiation in the marine sponge genus Discodermia (Demospongiae: Lithistida): the utility of ethanol extract profiles as species specific chemotaxonomic markers. Biochem Syst Ecol 22:353–365

    Article  CAS  Google Scholar 

  • Kemp J (1998) Zoogeography of the coral reef fishes of the Socotra archipelago. J Biogeogr 25:919–933

    Article  Google Scholar 

  • Klausewitz W (1989) Evolutionary history and zoogeography of the Red Sea ichthyofauna. Fauna of Saudi Arabia 10:310–337

    Google Scholar 

  • Klautau M, Russo CAM, Lazoski C et al (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422

    Article  PubMed  Google Scholar 

  • Lavrov DV (2010) Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baicalensis. Mol Biol Evol 27:757–760

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84:175–194

    Article  Google Scholar 

  • Maldonado M, Uriz MJ (1999) Sexual propagation by sponge fragments. Nature 398:476–476

    Article  CAS  Google Scholar 

  • Maldonado M, Carmona MC, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–788

    Article  CAS  Google Scholar 

  • Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc Lond Ser B Biol Sci 360:1917–1924

    Article  CAS  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda TF Jr et al (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517

    Article  PubMed  Google Scholar 

  • Paquin B, Laforest MJ, Lang BF (2000) Double-hairpin elements in the mitochondrial DNA of allomyces: evidence for mobility. Mol Biol Evol 17:1760–1768

    Article  CAS  PubMed  Google Scholar 

  • Polónia ARM, Cleary DFR, Freitas R et al (2015) The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Mol Ecol 24:409–423

    Article  PubMed  Google Scholar 

  • Pöppe J, Sutcliffe P, Hooper JNA et al (2010) COI barcoding reveals new clades and radiation patterns of indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS One 5:e9950

    Article  PubMed  PubMed Central  Google Scholar 

  • Redmond NE, Morrow CC, Thacker RW et al (2013) Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Integr Comp Biol 53:388–415

    Article  CAS  PubMed  Google Scholar 

  • Reveillaud J, van Soest RWM, Derycke S et al (2011) Phylogenetic relationships among NE Atlantic Plocamionida Topsent (1927) (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems. PLoS One 6:e16533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeograohy and connectivity of the latitudinally widespread scleractinian coral Pleisiastrea versipora in the western Pacific. Mol Ecol 11:1177–1189

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal A, Coutelle O, Craxton M (1993) Large-scale production of DNA sequencing templates by microtitre format PCR. Nucleic Acids Res 21:173–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rua CPJ, Zilberberg C, Sole-Cava AM (2011) New polymorphic mitochondrial markers for sponge phylogeography. J Mar Biol Assoc UK 91:1015–1022

    Article  CAS  Google Scholar 

  • Setiawan E, De Voogd NJ, Swierts T et al (2015) MtDNA diversity of the Indonesian giant barrel sponge Xestospongia testudinaria (Porifera: Haplosclerida) - implications from partial cytochrome oxidase 1 sequences. J Mar Biol Ass 96:323–332

    Article  Google Scholar 

  • Setiawan E, de Voogd NJ, Wörheide G, Erpenbeck D (2016) Bottomless barrel-sponge species in the indo-Pacific? Zootaxa 4136:393–396

    Article  PubMed  Google Scholar 

  • Shorthouse DP (2010) SimpleMappr, an online tool to produce publication-quality point maps. Retrieved from http://www.simplemappr.net

  • Siddall M, Rohling EJ, Almogi-Labin A et al (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  CAS  PubMed  Google Scholar 

  • Solé-Cava AM, Boury-Esnault N (1999) Patterns of intra and interspecific genetic divergence in marine sponges. In: Hooper JNA (ed) Memoirs of the Queensland museum, Proceedings of the 5th international sponge symposium, Brisbane, pp 591–602

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swierts T, Peijnenburg KTCA, de Leeuw C et al (2013) Lock, stock and two different barrels: comparing the genetic composition of morphotypes of the indo-pacific sponge Xestospongia testudinaria. PLoS One 8:e74396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syamsudin F, van Aken HM, Kaneko A (2010) Annual variation of the southern boundery current in the Banda Sea. Dynamic Atmosph Oceans 50:129–139

    Article  Google Scholar 

  • Van Soest RWM (1994) Demosponge distribution patterns. In: Van Soest RWM, van Kempen TMG, Braekman J-C (eds) Sponges in time and space. Balkema, Rotterdam, pp 213–224

    Google Scholar 

  • Van Soest RWM, Boury-Esnault N, Vacelet J et al (2012) Global diversity of sponges (Porifera). PLoS One 7:e35105

    Article  PubMed  PubMed Central  Google Scholar 

  • Voigt O, Wörheide G (2016) A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea). Org Divers Evol 16:53–64

    Article  Google Scholar 

  • Voigt O, Erpenbeck D, González-Pech RA, et al (2017) Calcinea of the Red Sea: providing a DNA barcode inventory with description of four new species. Mar Biodivers 1–26

  • Williams ST, Benzie JAH (1996) Genetic uniformity of widely separated populations on the coral reef starfish Linckia laevigata from the east Indian and West Pacific oceans, revealed by allozyme electrophoresis. Mar Biol 126:99–107

    Article  Google Scholar 

  • Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the indo-Pacific - micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38:1–88

    Article  Google Scholar 

  • Wörheide G, Degnan BM, Hooper JNA, Reitner J (2002) Biogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera 'willeyana': new data from nuclear internal transcribed spacer sequences. In: Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia 23–27 October 2000 (eds. Moosa KM, Soemodihardjo S, Soegiarto A, et al.), pp. 339–345. State Ministry for the Environment, Indonesia, Indonesian Institute of Sciences & The International Society for Reef Studies, Bali, Indonesia

  • Wörheide G, Epp L, Macis L (2008) Deep genetic divergences among indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Xavier JR, Rachello-Dolmen PG, Parra-Velandia FJ et al (2010) Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol Phylogenet Evol 56:13–20

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DE and GW thank the Deutsche Forschungsgemeinschaft (DFG) for financial support (Er611/3-1, Wo896/15-1). RA thanks the Indonesian Government for funding of her work. The scientific research cooperation between King Abdulaziz University (KAU), Faculty of Marine Sciences (FMS), Jeddah, Saudi Arabia, and the Senckenberg Research Institute (SRI), Frankfurt, Germany, in the framework of the Red Sea Biodiversity Project, during which the present material was collected, was funded by KAU GRANT NO. “I/1/432-DSR”. The authors acknowledge, with many thanks, KAU and SRI for technical and financial support. Steve C. de Cook, Gabriele Büttner, Simone Schätzle and two anonymous reviewers are thanked for various contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Erpenbeck.

Additional information

Communicated by M. M. El-Sherbiny

Electronic supplementary material

Supplementary Figure 1

Maximum likelihood phylogram of Hyrtios spp. based on the 28S data set. Note that positions with intragenomic polymorphisms were omitted prior to reconstructing the tree. Numbers on branches represent bootstrap support >70. Numbers preceding the taxon names refer to NCBI Genbank accession numbers or museum voucher numbers: (QM)G3#####: Queensland Museum; (SNSB-BSPG.)GW#### and others: Bavarian State Collection of Palaeontology and Geology (PDF 198 kb)

Supplementary Figure 2

Measurements of spicule length and width of selected representatives of S. massa and S. cf. massa. (PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erpenbeck, D., Aryasari, R., Benning, S. et al. Diversity of two widespread Indo-Pacific demosponge species revisited. Mar Biodiv 47, 1035–1043 (2017). https://doi.org/10.1007/s12526-017-0783-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0783-3

Keywords

Navigation