Marine Biodiversity

, Volume 48, Issue 1, pp 395–405 | Cite as

Deep-sea metazoan Meiofauna from a Polymetallic nodule area in the Central Indian Ocean Basin

  • Qianhui Zeng
  • Dingyong Huang
  • Rongcheng Lin
  • Jianjia Wang
Original Paper


The metazoan meiofauna in the Central Indian Ocean Basin were collected at five deep sea stations (depths ranging 4738 to 5418 m) during the China Ocean Mineral Resources Research and Development Association (COMRA) 22nd Expedition Cruise in December, 2011. The sampling stations were in and around a potentially commercial important polymetallic nodule area. All together five meiofauna taxa were detected, including Nematoda, Harpacticoida copepoda, Polychaeta, Halacaroidea and Ostracoda. Average meiofaunal abundance (9.59 ± 5.44 ind./10cm2) was generally lower than the other meiofaunal abundance reported in the Central Indian Ocean and much lower than those reported from other deep-sea regions. The abundance pattern of vertical distribution corresponded well with those from other deep-sea regions. Biomass calculation with coefficients considering detailed size classes was done. Average total meiofaunal biomass was estimated as 4.64 ± 1.81 μg/10 cm2 (dry weight). The composition of meiofaunal assemblages from different stations differed substantially. Stations in the center of the polymetallic nodule area had similar meiofaunal abundance, biomass, as well as relatively high similarity. The present study could offer a baseline of the meiofauna and enrich the meiofauna data in the area, and could be helpful for future disturbance studies.


Central Indian Ocean Meiofaunal community Deep sea Abundance Biomass Polymetallic nodule area 



This work is part of the National Basic Research Program of China supported by the China Ocean Mineral Resources Research and Development Association (COMRA) under contract No. 2015CB755902. Sincere thanks are given to all crew and scientists on the Dayangyihao vessel for their help during sampling.


  1. Ahnert A, Schriever G (2001) Response of abyssal Copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep-Sea Res II Top Stud Oceanogr 48:3779–3794CrossRefGoogle Scholar
  2. Ansari ZA (2000) Distribution of deep-sea benthos in the proposed mining area of central Indian Basin. Mar Georesour Geotechnol 18:201–207CrossRefGoogle Scholar
  3. Bussau C (1993) Taxonomische und ökologische untersuchungen an Nematoden des Peru-Beckens. Dissertation, zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen, Fakultiit der Christian-Albrechts-Universitat zu KielGoogle Scholar
  4. Chen XL (2004) The physical properties of surface sediments in oceanic polymetallic nodule. Donghai Mar Sci 22:28–33 (in Chinese)Google Scholar
  5. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd., PlymouthGoogle Scholar
  6. Coull BC (1988) Ecology of the marine meiofauna. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 18–38Google Scholar
  7. Coull BC, Chandler GT (1992) Pollution and meiofauna: field, laboratory, and mesocosm studies. Oceanogr Mar Biol Annu Rev 30:191–271Google Scholar
  8. Cronan DS (2001) Manganese Nodules. In: Thorpe S (ed) Turekian K. San Diego Academic Press, Encyclopedia of Ocean Sciences, pp 1526–1533Google Scholar
  9. Danovaro R, Della CN, Eleftheriou A, Fabiano M, Papadopoulou N, Smith C et al (1995) Meiofauna of the deep eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Prog Oceanogr 36:329–341CrossRefGoogle Scholar
  10. De Sousa SN, Sardessai SD, Babu VR, Murty VSN, Gupta GVM (2001) Chemical characteristics of central Indian Basin waters during the southern summer. Deep-Sea Res II Top Stud Oceanogr 48:3343–3352CrossRefGoogle Scholar
  11. Faubel A (1982) Determination of individual meiofauna dry weight values in relation to definite size classes. Cah Biol Mar 4:339–345Google Scholar
  12. Gambi C, Vanreusel A, Danovaro R (2003) Biodiversity of nematode assemblages from deep-sea sediments of the Atacama slope and trench (South Pacific Ocean). Deep-Sea Res I Oceanogr Res Pap 50:103–117CrossRefGoogle Scholar
  13. Gao AG, Wang CS, Yang JY, Wang ZP, He DH (2002) Distribution of deep-sea meiobenthos of the eastern and western portions of the COMRA's Pioneer area. Donghai Mar Sci 20:28–35 (in Chinese)Google Scholar
  14. Giere O (2013) Meiobenthology: the microscopic fauna in aquatic sediments. Springer-Verlag, HeidelbergGoogle Scholar
  15. Heip C, Warwick RM, Carr MR, Herman PMJ, Huys R, Smol N et al (1988) Analysis of community attributes of the benthic meiofauna of Frierfjord-Langesundfjord. Mar Ecol Prog Ser 46:171–180CrossRefGoogle Scholar
  16. Higgins RP, Thiel H (1988) Introduction to the study of Meiofauna. Smithsonian Institution Press, LondonGoogle Scholar
  17. Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the marginal ice zone of the Arctic Ocean. Deep-Sea Res I Oceanogr Res Pap 54:109–129CrossRefGoogle Scholar
  18. Huang DY (2010) Preliminary studies on the benthos from deep-sea hydrothermal fields in Lau Basin of Southwest Pacific and in southwest Indian ridge. Dissertation, Third Institute of Oceanography, State Oceanic Administration (in Chinese)Google Scholar
  19. Ingole BS, Ansari ZA, Matondkar SGP, et al (1999) Immediate response of meio and macrobenthos to disturbance caused by a benthic disturber. Proceedings of the Third ISOPE Ocean Mining Symposium, pp 191–197, Goa, IndiaGoogle Scholar
  20. Ingole BS, Ansari ZA, Rathod V, Rodrigues N (2000) Response of meiofauna to immediate benthic disturbance in the Central Indian Ocean Basin. Mar Georesour Geotechnol 18:263–272CrossRefGoogle Scholar
  21. Kalogeropoulou V, Bett BJ, Gooday AJ, Lampadariou N, Martinez AP, Vanreusel A (2010) Temporal changes (1989–1999) in deep-sea metazoan meiofaunal assemblages on the porcupine abyssal plain, NE Atlantic. Deep-Sea Res II Top Stud Oceanogr 57:1383–1395CrossRefGoogle Scholar
  22. Matondkar SP, Nair KKC, Ansari ZA (2005) Biological characteristics of central Indian Basin waters during the southern summer. Mar Georesour Geotechnol 23:299–313CrossRefGoogle Scholar
  23. Miljutin DM, Miljutina MA, Arbizu PM, Galéron J (2011) Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (clarion-Clipperton fracture zone, tropical eastern Pacific). Deep-Sea Res I Oceanogr Res Pap 58:885–897CrossRefGoogle Scholar
  24. Miljutina MA, Miljutin DM, Mahatma R, Galéron J (2010) Deep-sea nematode assemblages of the clarion-Clipperton Nodule Province (tropical north-eastern Pacific). Mar Biodivers 40:1–15CrossRefGoogle Scholar
  25. Mukhopadhyay R, Iyer SD, Ghosh AK (2003) The Indian Ocean nodule field: petrotectonic evolution and ferromanganese deposits. Earth Sci Rev 60:67–130CrossRefGoogle Scholar
  26. Neyman AA, Sokolova MN, Vinogradova NG, Pasternak FA (1973) Some patterns of the distribution of bottom fauna in the Indian Ocean. In: Zeitzschel B, Gerlach SA (eds) The biology of the Indian Ocean. Springer, Berlin Heidelberg, pp 467–473Google Scholar
  27. Parulekar AH, Harkantra SN, Ansari ZA, Matondkar SGP (1982) Abyssal benthos of the central Indian Ocean. Deep Sea research part a. Oceanogr Res Pap 29:1531–1537Google Scholar
  28. Parulekar AH, Ingole BS, Harkantra SN et al (1992) Deep-sea benthos of the western and Central Indian Ocean. In: Desai BN (ed) Oceanography of the Indian Ocean. Oxford Publishers, New Delhi, pp 261–267Google Scholar
  29. Pattan JN, MasuzawaT BDV, Parthiban G, Jauhari P, Yamamoto M (2005) Biological productivity, terrigenous influence and noncrustal elements supply to the Central Indian Ocean Basin: Paleoceanography during the past∼ 1 ma. J Earth Syst Sci 114:63–74CrossRefGoogle Scholar
  30. Pfannkuche O (1985) The deep-sea meiofauna of the porcupine seabight and abyssal-plain (NE Atlantic)-population-structure, distribution, standing stocks. Oceanol Acta 8:343–353Google Scholar
  31. Pfannkuche O, Thiel H (1987) Meiobenthic stocks and benthic activity on the NE-Svalbard shelf and in the Nansen Basin. Polar Biol 7:253–266CrossRefGoogle Scholar
  32. Raghukumar C, Bharathi PL, Ansari ZA, Nair S, Ingole B, Sheelu G et al (2001) Bacterial standing stock, meiofauna and sediment–nutrient characteristics: indicators of benthic disturbance in the central Indian Basin. Deep-Sea Res II Top Stud Oceanogr 48:3381–3399CrossRefGoogle Scholar
  33. Renaud-Mornant J, Gourbault N (1990) Evaluation of abyssal meiobenthos in the eastern central Pacific (clarion-Clipperton fracture zone). Prog Oceanogr 24:317–329CrossRefGoogle Scholar
  34. Rowe GT, Menzel DW (1971) Quantitative benthic samples from the deep Gulf of Mexico with some comments on the measurement of deep-sea biomass. Bull Mar Sci 21:556–566Google Scholar
  35. Sharma R (2005) Deep-sea impact experiments and their future requirements. Mar Georesour Geotechnol 23:331–338CrossRefGoogle Scholar
  36. Shimanaga M, Nomaki H, Suetsugu K, Murayama M, Kitazato H (2007) Standing stock of deep-sea metazoan meiofauna in the Sulu Sea and adjacent areas. Deep-Sea Res II Top Stud Oceanogr 54:131–144CrossRefGoogle Scholar
  37. Shirayama Y (1983) Size structure of Deep-Sea Meio-and macrobenthos in the western Pacific. Internationale Revue der gesamten Hydrobiologie und Hydrographie 68:99–810CrossRefGoogle Scholar
  38. Singh R, Miljutin DM, Miljutina MA, Arbizu PM, Ingole BS (2014) Deep-sea nematode assemblages from a commercially important polymetallic nodule area in the Central Indian Ocean Basin. Mar Biol Res 10:906–916CrossRefGoogle Scholar
  39. Soetaert K, Heip C (1989) The size structure of nematode assemblages along a Mediterranean deep-sea transect. Deep Sea research part a. Oceanogr Res Pap 36:93–102Google Scholar
  40. Soetaert K, Muthumbi A, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:179–193CrossRefGoogle Scholar
  41. Soltwedel T, Miljutina M, Mokievsky V, Thistle D, Vopel K (2003) The meiobenthos of the molloy deep (5 600 m), Fram Strait, Arctic Ocean. Vie et Milieu-life Environ 53:1–13Google Scholar
  42. Thiel H (1983) Meiobenthos and nanobenthos of the deep sea. In: Rowe GT (ed) The sea. J. Wiley and Sons, Hoboken, pp 167–230Google Scholar
  43. Thiel H, Schriever G, Foell EJ (2005) Polymetallic nodule mining, waste disposal, and species extinction at the abyssal seafloor. Mar Georesour Geotechnol 23:209–220CrossRefGoogle Scholar
  44. Tietjen JH, Deming JW, Rowe GT, Macko S, Wilke RJ (1989) Meiobenthos of the Hatteras abyssal plain and Puerto Rico trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep Sea research part a. Oceanogr Res Pap 36:1567–1577Google Scholar
  45. Wang JJ (2012) Preliminary studies on the benthos from deep-sea hydrothermal fields in Indian Ocean and East Pacific Rise. Dissertation, Third Institute of Oceanography, State Oceanic Administration (in Chinese)Google Scholar
  46. Wang XG, Wang CS, Zhang DS, Hong LS (2010) An improved method for separating meiofauna from deep-sea sediments using colloidal silica Ludox@HS-40. Marine Sci 28:79–84 (in Chinese)Google Scholar
  47. Wang XG, Zhou YD, Zhang DS, Hong LS, Wang CS (2013) A study of meiofauna in the COMRA's contracted area during the summer of 2005. Acta Ecol Sin 33:492–500 (in Chinese)CrossRefGoogle Scholar
  48. Warwick RM (1988) The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Mar Pollut Bull 19:259–268CrossRefGoogle Scholar
  49. Whitney FA, Crawford WR, Harrison PJ (2005) Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacific. Deep-Sea Res II Top Stud Oceanogr 52:681–706CrossRefGoogle Scholar
  50. Widbom B (1984) Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. Mar Biol 84:101–108CrossRefGoogle Scholar
  51. Wyrtki K (1973) Physical oceanography of the Indian Ocean. In: Bernt Z, Sebastian AG (eds) The biology of the Indian Ocean. Springer, Berlin Heidelberg, pp 18–36CrossRefGoogle Scholar
  52. Zhou YD, Wang CS, Wang XG, Liu ZS, Lu Y, Liu XH (2011) The distribution of size-fractionated chlorophyll a in the Indian Ocean south equatorial current. Acta Ecol Sin 31:4586–4598 (in Chinese)Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qianhui Zeng
    • 1
  • Dingyong Huang
    • 1
  • Rongcheng Lin
    • 1
  • Jianjia Wang
    • 1
  1. 1.The Third Institute of Oceanography, State Oceanic AdministrationXiamenChina

Personalised recommendations