Skip to main content

Advertisement

Log in

Mapping benthic biodiversity using georeferenced environmental data and predictive modeling

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Biodiversity is critical for maintaining and stabilizing ecosystem processes. There is a need for high-resolution biodiversity maps that cover large sea areas in order to address ecological questions related to biodiversity-ecosystem functioning relationships and to provide data for marine environmental protection and management decisions. However, traditional sampling-point-wise field work is not suitable for covering extensive areas in high detail. Spatial predictive modeling using biodiversity data from sampling points and georeferenced environmental data layers covering the whole study area is a potential way to create biodiversity maps for large spatial extents. Random forest (RF), generalized additive models (GAM), and boosted regression trees (BRT) were used in this study to produce benthic (macroinvertebrates, macrophytes) biodiversity maps in the northern Baltic Sea. Environmental raster layers (wave exposure, salinity, temperature, etc.) were used as independent variables in the models to predict the spatial distribution of species richness. A validation dataset containing data that was not included in model calibration was used to compare the prediction accuracy of the models. Each model was also evaluated visually to check for possible modeling artifacts that are not revealed by mathematical validation. All three models proved to have high predictive ability. RF and BRT predictions had higher correlations with validation data and lower mean absolute error than those of GAM. Both mathematically and visually, the predictions by RF and BRT were very similar. Depth and seabed sediments were the most influential abiotic variables in predicting the spatial patterns of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Bѐgin C, Johnson LE, Himmelman JH (2004) Macroalgal canopies: distribution and diversity of associated invertebrates and effects on the recruitment and growth of mussels. Mar Ecol Prog Ser 271:121–132

    Article  Google Scholar 

  • Bendtsen J, Gustafsson KE, Söderkvist J, Hansen JLS (2009) Ventilation of bottom water in the North Sea–Baltic Sea transition zone. J Marine Syst 75:138–149

    Article  Google Scholar 

  • Boero F, Bonsdorff E (2007) A conceptual framework from marine biodiversity and ecosystem functioning. Mar Ecol 28:134–145

    Article  Google Scholar 

  • Bonsdorff E (2006) Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. J Exp Mar Biol Ecol 330:383–391

    Article  Google Scholar 

  • Boström C, Bonsdorff E (2000) Zoobenthic community establishment and habitat complexity—the importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. Mar Ecol Prog Ser 205:123–138

    Article  Google Scholar 

  • Breiman L, Cutler A, Liaw A, Wiener M (2015) randomForest: Breiman and Cutler’s random forests for classification and regression. R package version 4:6–12 http://cran.r-project.org/. Accessed 11 December 2016

    Google Scholar 

  • Brown CJ, Mitchell A, Limpenny DS, Robertson MR, Service M, Golding N (2005) Mapping seabed habitats in the firth of Lorn off the west coast of Scotland: evaluation and comparison of habitat maps produced using the acoustic ground-discrimination system, RoxAnn, and sidescan sonar. ICES J Mar Sci 62:790–802

    Article  Google Scholar 

  • Brown CJ, Smith SJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502–520

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM et al (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  CAS  PubMed  Google Scholar 

  • Campbell V, Murphy G, Romanuk TN (2011) Experimental design and the outcome and interpretation of diversity–stability relations. Oikos 120:399–408

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Crase B, Liedloff A, Vesk PA, Fukuda Y, Wintle BA (2014) Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Glob Change Biol 20:2566–2579

    Article  Google Scholar 

  • Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global ecol Biogeogr 16:129-138s

  • Dunstan PK, Althaus F, Williams A, Bax NJ (2012) Characterising and predicting benthic biodiversity for conservation planning in deepwater environments. PLoS One 7(5):e36558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleftheriou A, McIntyre AD (2005) Methods for the study of marine benthos, 3rd edn. Blackwell, Oxford

    Book  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol S40:677–697

    Article  Google Scholar 

  • Elith J and Leathwick JR (2016) Boosted Regression Trees for ecological modeling. https://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf. Accessed 11 December 2016

  • Ellingsen KE, Clarke KR, Somerfield PJ, Warwick RM (2005) Taxonomic distinctness as a measure of diversity applied over a large scale: the benthos of the Norwegian continental shelf. J Anim Ecol 74:1069–1079

    Article  Google Scholar 

  • Elliott JM, Drake CM (1981) A comparative study of seven grabs used for sampling benthic macroinvertebrates in rivers. Freshw Biol 11:99–120

    Article  Google Scholar 

  • Feilhauer H, Schmidtlein S (2009) Mapping continuous fields of forest alpha and beta diversity. Appl Veg Sci 12:429–439

    Article  Google Scholar 

  • Finnish Ministry of the Environment (2014) Finnish marine management monitoring handbook. http://www.ymparisto.fi/download/noname/%7BECF9A983-AC50-4DAB-B237-D7EA3A09664B%7D/103978. Accessed 11 December 2016

  • Ferrari R, McKinnon D, He H, Smith RN, Corke P, González-Rivero M, Mumby PJ, Upcroft B (2016) Quantifying multiscale habitat structural complexity: a cost-effective framework for underwater 3D modelling. Remote Sens 8:113

    Article  Google Scholar 

  • Flannagan JF (1970) Efficiencies of various grabs and corers in Sarnpling freshwater benthos. J Fish Res 27:169l–1700

    Article  Google Scholar 

  • Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337–407

    Article  Google Scholar 

  • Fuchs S, Balling N (2016) Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: uncertainty analysis of the thermal-conductivity parameterization. Geothermics 64:1–14

    Article  Google Scholar 

  • Gladstone W (2007) Requirements for marine protected areas to conserve the biodiversity of rocky reef fishes. Aquat Conserv Mar fReshw Ecosys 17:71–87

    Article  Google Scholar 

  • González-Rivero M, Beijbom O, Rodriguez-Ramirez A, Holtrop T, González-Marrero Y, Ganase A, Roelfsema C, Phinn S, Hoegh-Guldberg O (2016) Scaling up ecological measurements of coral reefs using semi-automated field image collection and analysis. Remote Sens 8:30

    Article  Google Scholar 

  • Gray JS (2001) Marine diversity: the paradigms in patterns of species richness examined. Sci Mar 65:41–56

    Article  Google Scholar 

  • Gruszka P (1999) The river Odra estuary as a gateway for alien species immigration to the Baltic Sea basin. Acta Hydrochim Hydrobiol 27:374–382

    Article  CAS  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Hansen JP, Wikström SA, Axemar H, Kautsky L (2011) Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquatic Ecol 45:11–22

    Article  CAS  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalised additive models. Chapman and Hall, New York

    Google Scholar 

  • Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J et al (2010) General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • HELCOM (2009) Eutrophication in the Baltic Sea: An integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea Region. http://www.helcom.fi/Lists/Publications/BSEP115b.pdf. Accessed 11 December 2016

  • HELCOM (2013) HELCOM HUB: Technical Report on the HELCOM Underwater Biotope and habitat classification http://www.helcom.fi/Lists/Publications/BSEP139.pdf Accessed 31 May 2017

  • HELCOM (2015) Manual for Marine Monitoring in the COMBINE Programme of HELCOM. http://www.helcom.fi/action-areas/monitoring-and-assessment/manuals-and-guidelines/combine-manual. Accessed 11 December 2016

  • Herkül K, Kotta J (2009) Effects of eelgrass (Zostera marina) canopy removal and sediment addition on sediment characteristics and benthic communities in the northern Baltic Sea. Mar Ecol 30:74–82

    Article  Google Scholar 

  • Herkül K, Kotta J, Püss T, Kotta I (2009) Crustacean invasions in the Estonian coastal sea. Est J Ecol 58:313–323

    Article  Google Scholar 

  • Herkül K, Kotta J, Pärnoja M (2011) Effect of physical disturbance on the soft sediment benthic macrophyte and invertebrate community in the northern Baltic Sea. Boreal Env Res 16(suppl. A):209–219

    Google Scholar 

  • Herkül K, Kotta J, Kutser T, Vahtmäe E (2013) Relating remotely sensed optical variability to marine benthic biodiversity. PLoS One 8:e55624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herkül K, Torn K, Suursaar Ü, Alari V, Peterson A (2016) Variability of benthic communities in relation to hydrodynamic conditions in the north-eastern Baltic Sea. J Coast Res 75(sp1):867–871

    Article  Google Scholar 

  • Herkül K, Peterson A, Paekivi S (2017) Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows. Estuar Coast Shelf S 192:57-71

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Huang Z, Brooke BP, Harris PT (2011) A new approach to mapping marine benthic habitats using physical environmental data. Cont Shelf Res 31:S4–S16

    Article  Google Scholar 

  • Innes JL, Koch B (1998) Forest biodiversity and its assessment by remote sensing. Global Ecol Biogeogr Lett 7:397–419

    Google Scholar 

  • Jänes H, Kotta J, Herkül K (2015) High fecundity and predation pressure of the invasive Gammarus tigrinus cause decline of indigenous gammarids. Estuar Coast Mar Sci 165:185–189

    Article  Google Scholar 

  • Kautsky H, Kautsky L, Kautsky N, Kautsky U, Lindblad C (1992) Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr Suec 78:33–48

    Google Scholar 

  • Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters – a review. Oceanogr Mar Biol-An Annu Rev 40:427–489

    Google Scholar 

  • Knudby A, LeDrew E, Brenning A (2010) Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens Environ 114:1230–1241

    Article  Google Scholar 

  • Kotta J, Orav H (2001) Role of benthic macroalgae in regulating macro- zoobenthic assemblages in the Väinameri (north-eastern Baltic Sea). Ann Zool Fenn 38:163–171

    Google Scholar 

  • Kotta J, Lauringson V, Martin G, Simm M, Kotta I, Herkül K, Ojaveer H (2008) Gulf of Riga and Pärnu Bay. In: Schiewer U (ed) Ecology of Baltic coastal waters. Springer, Berlin Heidelberg, pp 217–243

    Chapter  Google Scholar 

  • Kuprijanov I, Herkül K, Kotta J (2017) Ecological niche differentiation between native and non-native shrimps in the northern Baltic Sea. Aquat Ecol 51. doi:10.1007/s10452-017-9624-5

  • Laine AO, Sandler H, Andersin A-B, Stigzelius J (1997) Long-term changes of macrozoobenthos in the eastern Gotland Basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J Sea Res 38:135–159

    Article  Google Scholar 

  • Lessin G, Raudsepp U, Stips A (2014) Modelling the influence of Major Baltic inflows on near-bottom conditions at the entrance of the Gulf of Finland. PLoS One 9:e112881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Lucieer V, Hill NA, Barrett NS, Nichol S (2013) Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuarine, Coast Shelf S 117:94–106

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford, p 256

    Google Scholar 

  • Maljutenko I and Raudsepp U (2014) Validation of GETM model simulated long-term salinity fields in the pathway of saltwater transport in response to the Major Baltic Inflows in the Baltic Sea. 2014 IEEE/OES Baltic International Symposium (BALTIC), J. Carroll, Ed., Tallinn, IEEE/OES 23–31 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6887830. Accessed 11 December 2016

  • Martin G, Kotta J, Möller T, Herkül K (2013) Spatial distribution of marine benthic habitats in the Estonian coastal sea, northeastern Baltic Sea. Estonian J Ecol 62:165–191

    Article  Google Scholar 

  • McArthur MA, Brooke BP, Przeslawski R, Ryan DA, Lucieer VL, Nichol S, McCallum AW, Mellin C, Cresswell ID, Radke LC (2010) On the use of abiotic surrogates to describe marine benthic biodiversity. Estuar Coast Shelf S 88:21–32

    Article  Google Scholar 

  • Nikolopoulos A, Isæus M (2008) Wave exposure calculations for the Estonian coast. AquaBiota Water Research AB, Stockholm, Sweden

    Google Scholar 

  • Nagelkerken I, Connell SD (2015) Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. P Nat A Sci 112:13272–13277

    Article  CAS  Google Scholar 

  • Olabarria C (2006) Faunal change and bathymetric diversity gradient in deep-sea prosobranchs from northeastern Atlantic. Biodivers Conserv 15:3685–3702

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Råberg S, Kautsky K (2007) A comparative biodiversity study of the associated fauna of perennial fucoids and filamentous algae. Estuar Coast Shelf S 73:249–258

    Article  Google Scholar 

  • Reisalu G, Kotta J, Herkül K, Kotta I (2016) The invasive amphipod Gammarus tigrinus sexton; 1939 displaces native gammarid amphipods from sheltered macrophyte habitats of the Gulf of Riga. Aquat Invasions 11:45–54

    Article  Google Scholar 

  • Reiss H, Birchenough S, Borja A, Buhl-Mortensen L, Craeymeersch J, Dannheim J et al (2014) Benthos distribution modelling and its relevance for marine ecosystem management. ICES J Mar Sci 72:297–315

    Article  Google Scholar 

  • Revermann R, Schmid H, Zbinden N, Spaar R, Schröder B (2012) Habitat at the mountain tops: how long can rock ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss alps? A multi-scale approach. J Ornithol 153:891–905

    Article  Google Scholar 

  • Ridgeway G (2007) Generalized Boosted Models: A guide to the gbm package. http://www.saedsayad.com/docs/gbm2.pdf. Accessed 11 December 2016

  • Robinson LM, Elith J, Hobday AJ, Pearson RG, Kendall BE, Possingham HP, Richardson AJ (2011) Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob Ecol Biogeogr 20:789–802

    Article  Google Scholar 

  • Rousi H, Laine AO, Peltonen H, Kangas P, Andersin A-B, Rissanen J, Sandberg-Kilp E, Bonsdorff E (2013) Long-term changes in coastal zoobenthos in the northern Baltic Sea: the role of abiotic environmental factors. ICES J Mar Sci 70:440–451

    Article  Google Scholar 

  • Sanders JL, Kendall MA, Hawkins AJS, Spicer JI (2007) Can functional groups be used to indicate estuarine ecological status? Hydrobiologia 588:45–58

    Article  Google Scholar 

  • Schiedek D (1997) Marenzelleria Cf. Viridis (Polychaeta: Spionidae) — ecophysiological adaptations to a life in the coastal waters of the Baltic Sea. Aquat Ecol 31:199–210

    Article  CAS  Google Scholar 

  • Schubert H, Blindow I, eds. (2003) Charophytes of the Baltic Sea. Koeltz Scientific Books, pp 325

  • Snoeijs-Leijonmalm P, Schubert H, Radziejewska T (2017) Biological oceanography of the Baltic Sea. Springer, Netherlands

    Book  Google Scholar 

  • Steinhardt T, Selig U (2007) Spatial distribution patterns and relationship between recent vegetation and diaspore bank of a brackish coastal lagoon on the southern Baltic Sea. Estuar Coast Shelf S 74:205–214

    Article  Google Scholar 

  • Stephens D and Diesing M (2014) A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS One 9: e93950

  • Suursaar Ü, Alari V, Tõnisson H (2014) Multi-scale analysis of wave conditions and coastal changes in the north-eastern Baltic Sea. J Coastal Res 70:223–228

    Article  Google Scholar 

  • Swedish Agency for Marine and Water Management (2016) Environmental monitoring programs in the seas and coastal areas. https://www.havochvatten.se/hav/vagledning--lagar/vagledningar/ovriga-vagledningar/miljoovervakningens-metoder-och-undersokningstyper-inom-programomrade-kust-och-hav.html. Accessed 11 December 2016

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  PubMed  Google Scholar 

  • Torn K, Kovtun-Kante A, Herkül K, Martin G, Mäemets H (2015) Distribution and predictive occurrence model of charophytes in Estonian waters. Aquat Bot 120:142–149

    Article  Google Scholar 

  • Torn K, Herkül K, Martin G, Oganjan K (2017) Assessment of quality of three marine benthic habitat types in northern Baltic Sea. Ecol Indic 73:772–783

    Article  Google Scholar 

  • Väli G, Meier HEM, Elken J (2013) Simulated halocline variability in the Baltic Sea and its impact on hypoxia during 1961–2007. J Geophys Res-Oceans 118:6982–7000

    Article  Google Scholar 

  • VELMU (2016) The Finnish Inventory Programme for the Underwater Marine Environment, VELMU. http://www.ymparisto.fi/fi-FI/VELMU. Accessed 11 December 2016

  • Villnäs A, Norkko J, Hietanen S, Josefson AB, Lukkari K, Norkko A (2013) The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94:2275–2287

    Article  PubMed  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Distribut NPS (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc 73:3–36

    Article  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  PubMed  Google Scholar 

  • Zajac RN (2008) Macrobenthic biodiversity and sea floor landscape structure. J Exp Mar Biol Ecol 366:198–203

    Article  Google Scholar 

  • Zettler ML, Karlsson A, Kontula T, Gruszka P, Laine AO, Herkül K, Schiele KS, Maximov A, Haldin J (2013) Biodiversity gradient in the Baltic Sea: a comprehensive inventory of of macrozoobenthos data. Helgoland Mar Res 68:49–57

    Article  Google Scholar 

  • Zimmermann NE, Edwards TC Jr, Graham CH, Pearman PB, Svenning J-C (2010) New trends in species distribution modelling. Ecography 33:985–989

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the institutional research funding IUT02-20 of the Estonian Ministry of Education and Research. The project has received funding from the BONUS project BIO-C3, the Joint Baltic Sea Research and Development Programme (Art 185), funded jointly from the European Union’s Seventh Programme for Research, Technological Development and Demonstration, and from the Estonian Research Council. The authors thank Kiran Liversage for the language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneliis Peterson.

Additional information

Communicated by D. M. Paterson

Appendices

Appendix 1

Table 4 List of macrobenthos taxa. Taxonomic level in brackets

Appendix 2 Partial dependence plots of the random forest models that were used for making spatial predictions

Fig. 5
figure 5

Partial dependence plots for total benthic species diversity

Fig. 6
figure 6

Partial dependence plots for faunal species diversity

Fig. 7
figure 7

Partial dependence plots for floral species diversity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, A., Herkül, K. Mapping benthic biodiversity using georeferenced environmental data and predictive modeling. Mar Biodiv 49, 131–146 (2019). https://doi.org/10.1007/s12526-017-0765-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0765-5

Keywords

Navigation