Skip to main content
Log in

A quantitative and statistical biological comparison of three semi-enclosed seas: the Red Sea, the Persian (Arabian) Gulf, and the Gulf of California

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Similar habitats separated by great distances can provide remarkable examples of convergent evolution in biological diversity, and have been influential in our understanding of community ecology, historical biogeography, and evolution. Here, we compare three semi-enclosed seas in arid regions of the northern hemisphere, the Red Sea, the Persian (Arabian) Gulf, and the Gulf of California, and test whether they show similar biodiversity patterns. Despite large geographic separations between the seas, the similar shapes and latitudinal locations lead to several analogous abiotic conditions. These similarities, however, do not result in equivalent biodiversity patterns, even when correcting for different regional species pools. Comparisons revealed that the Red Sea contains a greater species diversity of vertebrates, but that the Gulf of California contains the greatest species diversity of invertebrates. Notably, vertebrate abundance patterns were statistically similar between the Persian Gulf and the Gulf of California. Divergences are likely due to variable habitats within each sea, several influential abiotic differences, and dissimilar histories among the seas. While these results support a null hypothesis of biological dissimilarity despite abiotic similarities, they are the first statistical comparisons of the biotas of these three regions. Continued statistical comparisons among marine ecosystems have the potential to reveal ecological and evolutionary patterns that typically go unnoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez-Borrego S (2010) Physical, chemical, and biological oceanography of the Gulf of California. In: Brusca RC (ed) The Gulf of California: biodiversity and conservation. University of Arizona Press, Tucson, Arizona, pp 24–48

    Google Scholar 

  • Al-Yamani FY, Bishop J, Ramadhan E, Al-Husaini M, Al-Ghadban AN (2004) Oceanographic atlas of Kuwait’s waters. Kuwait Institute for Scientific Research, Safat, Kuwait

    Google Scholar 

  • Al-Yamani F, Subba Rao DV, Mharzi A, Ismail W, Al-Rifaie K (2006) Primary production off Kuwait, an arid zone environment, Arabian Gulf. Int J Oceans Oceanogr 1(1):67–85

    CAS  Google Scholar 

  • Bailey GN, Flemming NC, King GC, Lambeck K, Momber G, Moran LJ et al (2007) Coastlines, submerged landscapes, and human evolution: the Red Sea Basin and the Farasan Islands. Coast Arch 2(2):127–160

    Article  Google Scholar 

  • Bellwood DR, Hughes TP (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292(5521):1532–1535

    Article  CAS  Google Scholar 

  • Bellwood DR, Wainwright PC, Fulton CJ, Hoey A (2002) Assembly rules and functional groups at global biogeographical scales. Funct Ecol 16(5):557–562

    Article  Google Scholar 

  • Blanchette CA, Wieters EA, Broitman BR, Kinlan BP, Schiel DR (2009) Trophic structure and diversity in rocky intertidal upwelling ecosystems: a comparison of community patterns across California, Chile, South Africa and New Zealand. Prog Oceanogr 83(1):107–116

    Article  Google Scholar 

  • Brusca RC, Findley LT, Hastings PA, Hendrickx ME, Torre Cosio J, van der Heiden AM (2005) Macrofaunal biodiversity in the Gulf of California. In: Cartron JE, Ceballos G, Felger RS (eds) Biodiversity, ecosystems, and conservation in Northern Mexico. Oxford University Press, New York, pp 179–203

  • Buchanan JR, Krupp F, Burt JA, Feary DA, Ralph GM, Carpenter KE (2016) Living on the edge: vulnerability of coral-dependent fishes in the Gulf. Mar Pollut Bull 105(2):480–488. doi:10.1016/j.marpolbul.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  • Bunge J, Fitzpatrick M (1993) Estimating the number of species: a review. J Am Stat Assoc 88(421):364–373

    Google Scholar 

  • Cayuela L, Gotelli NJ, Colwell RK (2015) Ecological and biogeographic null hypotheses for comparing rarefaction curves. Ecol Monogr 85(3):437–455

    Article  Google Scholar 

  • Chamberlain S, Ram K, Barve V, Mcglinn D, Chamberlain MS (2015) Package ‘rgbif’. Computer program

  • Chao A, Colwell RK, Lin CW, Gotelli NJ (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90(4):1125–1133

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67

    Article  Google Scholar 

  • comte de Buffon GLL (1785) Natural history, general and particular, vol 6. W. Strahan and T. Cadell, London

    Google Scholar 

  • Corlett RT, Primack RB (2006) Tropical rainforests and the need for cross-continental comparisons. Trends Ecol Evol 21(2):104–110

    Article  Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean-climate regions. Trends Ecol Evol 11(9):362–366

    Article  CAS  Google Scholar 

  • Cowman PF, Bellwood DR (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40(2):209–224

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH et al (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40(6):1170–1181

    Article  Google Scholar 

  • DiBattista JD, Howard Choat J, Gaither MR, Hobbs JPA, Lozano-Cortés DF, Myers RF et al (2016a) On the origin of endemic species in the Red Sea. J Biogeogr 43(1):13–30

    Article  Google Scholar 

  • DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF et al (2016b) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43(1):423–439

    Article  Google Scholar 

  • García-Roselló E, Guisande C, Manjarrés-Hernández A, González-Dacosta J, Heine J, Pelayo-Villamil P et al (2015) Can we derive macroecological patterns from primary global Biodiversity information facility data? Glob Ecol Biogeogr 24(3):335–347

    Article  Google Scholar 

  • Gentry AH (1993) Four neotropical rainforests. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, New York, 39–54

    Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427–432

    Article  Google Scholar 

  • Hubbell SP (1997) A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16(Suppl 1):S9–S21

    Article  Google Scholar 

  • Kämpf J, Sadrinasab M (2006) The circulation of the Persian Gulf: a numerical study. Ocean Sci 2(1):27–41

    Article  Google Scholar 

  • Kassler P (1973) The structural and geomorphic evolution of the Persian Gulf. In: Purser BH (ed) The Persian Gulf. Springer, Berlin Heidelberg, pp 11–32

    Chapter  Google Scholar 

  • Kelt DA, Brown JH, Heske EJ, Marquet PA, Morton SR, Reid JR et al (1996) Community structure of desert small mammals: comparisons across four continents. Ecology 77(3):746–761

    Article  Google Scholar 

  • Klausewitz W (1989) Evolutionary history and zoogeography of the Red Sea ichthyofauna. Fauna of Saudi Arabia 10:310–337

  • Kuronuma K, Abe Y (1986) Fishes of the Arabian Gulf. Kuwait Institute for Scientific Research, Safat, Kuwait

    Google Scholar 

  • Lambeck K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet Sci Lett 142(1–2):43–57

    Article  CAS  Google Scholar 

  • Lavín MF, Castro R, Beier E, Cabrera C, Godínez VM, Amador-Buenrostro A (2014) Surface circulation in the Gulf of California in summer from surface drifters and satellite images (2004–2006). J Geophys Res Oceans 119(7):4278–4290

    Article  Google Scholar 

  • Ledesma-Vázquez J, Carreño AL (2010) Origin, age, and geological evolution of the Gulf of California. In: Brusca RC (ed) The Gulf of California: biodiversity and conservation. University of Arizona Press, Tucson, Arizona, pp 7–23

    Google Scholar 

  • Ludt WB, Rocha LA (2015) Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J Biogeogr 42(1):25–38

    Article  Google Scholar 

  • Marinone SG (2003) A three-dimensional model of the mean and seasonal circulation of the Gulf of California. J Geophys Res Oceans 108(C10)

  • Nagy EA, Stock JM (2000) Structural controls on the continent-ocean transition in the northern Gulf of California. J Geophys Res Sol Earth 105(B7):16251–16269

    Article  Google Scholar 

  • Pous S, Lazure P, Carton X (2015) A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: intraseasonal to interannual variability. Cont Shelf Res 94:55–70

    Article  Google Scholar 

  • Price ARG, Jones DA, Krupp F (2002) Biodiversity. In: Khan NY, Munawar M, Price ARG (eds) The Gulf ecosystem: health and sustainability. Backhuys Publishers, Leiden, pp 105–123

    Chapter  Google Scholar 

  • Raitsos DE, Pradhan Y, Brewin RJ, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8(6):e64909

    Article  CAS  Google Scholar 

  • Sbrocco EJ, Barber PH (2013) MARSPEC: ocean climate layers for marine spatial ecology. Ecology 94(4):979. doi:10.1890/12-1358.1

    Article  Google Scholar 

  • Sheppard CRC, Price ARG, Roberts CM (1992) Marine ecology of the Arabian region: patterns and processes in extreme tropical environments. Academic Press, London

    Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA et al (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29(4):436–459

    Article  Google Scholar 

  • Thomson DA, Lehner CE (1976) Resilience of a rocky intertidal fish community in a physically unstable environment. J Exp Mar Biol Ecol 22(1):1–29

    Article  Google Scholar 

  • Thomson DA, Findley LT, Kerstitch AN (2000) Reef fishes of the Sea of Cortez: the rocky-shore fishes of the Gulf of California. University of Texas Press, Austin, Texas

    Google Scholar 

  • Vaughan GO, Burt JA (2015) The changing dynamics of coral reef science in Arabia. Mar Pollut Bull 105(2):441–458. doi:10.1016/j.marpolbul.2015.10.052

    Article  CAS  PubMed  Google Scholar 

  • Wills C, Harms KE, Condit R, King D, Thompson J, He F et al (2006) Nonrandom processes maintain diversity in tropical forests. Science 311(5760):527–531

    Article  CAS  Google Scholar 

  • Yao F, Hoteit I, Pratt LJ, Bower AS, Köhl A, Gopalakrishnan G et al (2014a) Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J Geophys Res Oceans 119(4):2263–2289

    Article  Google Scholar 

  • Yao F, Hoteit I, Pratt LJ, Bower AS, Zhai P, Köhl A et al (2014b) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res Oceans 119(4):2238–2262

    Article  Google Scholar 

  • Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M et al (2007) How global is the global biodiversity information facility? PLoS One 2(11):e1124

    Article  Google Scholar 

  • Zeitzschel B (1969) Primary productivity in the Gulf of California. Mar Biol 3(3):201–207

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the museums that have uploaded their data to GBIF, for, without these data, this study would not have been possible. In addition, we thank W. Shaw, G. Soria, the University of Arizona, the Kuwait Institute for Scientific Research, J. Burt, and NYU Abu Dhabi for assistance and support during trips that inspired this research. We also thank, in no particular order: K. Harms, G. Bernardi, F. Alda, M.E. Hellberg, and J. Gutt for their helpful comments and discussions that aided this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Ludt.

Additional information

Communicated by J. Gutt

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludt, W.B., Morgan, L., Bishop, J. et al. A quantitative and statistical biological comparison of three semi-enclosed seas: the Red Sea, the Persian (Arabian) Gulf, and the Gulf of California. Mar Biodiv 48, 2119–2124 (2018). https://doi.org/10.1007/s12526-017-0740-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0740-1

Keywords

Navigation