Skip to main content

Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part I – Amphidiscophora

A Correction to this article was published on 04 November 2017

This article has been updated


The Clarion-Clipperton Fracture Zone (CCFZ) in the northeastern Pacific is the world’s largest area for potential deep-sea mining of polymetallic nodules. Furthermore, it is one of the largest, most remote and least investigated ecosystems worldwide. Sponges (Porifera) represent one of the main groups of benthic deep-sea megafauna. This is the first study on taxonomy of amphidiscophorid sponges from polymetallic nodule fields in the CCFZ, and includes descriptions of six known and three new species: Hyalonema (Onconema) clarioni sp. nov., Hyalonema (Prionema) breviradix sp. nov. and Poliopogon microuncinata sp. nov.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Change history

  • 04 November 2017

    In the originally published article, Tables 7, 9, 11, 15, 17 and 19 show values in cm instead of µm.


  1. Beaulieu SE (2001a) Life on glass houses: sponge stalk communities in the deep sea. Mar Biol 138:803–817. doi:10.1007/s002270000500

    Article  Google Scholar 

  2. Beaulieu SE (2001b) Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks. Deep Sea Res Part 1 Oceanogr Res Pap 48(4):1121–1137. doi:10.1016/S0967-0637(00)00055-8

    Article  Google Scholar 

  3. Boury-Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  4. Glover AG, Smith CR (2003) The deep-sea floor ecosystem: currents status and prospects of anthropogenic change by the year 2025. Environ Conserv 30(3):219–241. doi:10.1017/S0376892903000225

    Article  Google Scholar 

  5. Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14. doi:10.1016/j.oregeorev.2012.12.001

    Article  Google Scholar 

  6. Kutti T, Bannister RJ, Fosså JH, Krogness CM, Tjensvoll I, Søvik G (2015) Metabolic responses of the deep-water sponge Geodia barretti to suspended bottom sediment, simulated mine tailings and drill cuttings. J Exp Mar Bio Ecol 473:64–72. doi:10.1016/j.jembe.2015.07.017

    Article  CAS  Google Scholar 

  7. Leys SP (2013) Effects of sediment on glass sponges (Porifera, Hexactinellida) and projected effects on glass sponge reefs. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/074

  8. Petersen S, Krätschell A, Augustin N, Jamieson J, Hein JR, Hannington MD (2016) News from the seabed – geological characteristics and resource potential of deep-sea mineral resources. Mar Pol 70:175–187. doi:10.1016/j.marpol.2016.03.012

    Article  Google Scholar 

  9. Purser A, Marcon Y, Hoving HJT, Vecchione M, Piatkowski U, Eason D, Bluhm H, Boetius A (2016) Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr Biol 26:R1247–R1271. doi:10.1016/j.cub.2016.10.052

    Article  CAS  Google Scholar 

  10. Reiswig H, Stone R (2013) New glass sponges (Porifera: Hexactinellida) from deep waters of the central Aleutian Islands, Alaska. Zootaxa 3628(1):001–064. doi:10.11646/zootaxa.3628.1.1

    Article  Google Scholar 

  11. Reiswig H (2014) Six new species of glass sponges (Porifera: Hexactinellida) from the north-eastern Pacific Ocean. J Mar Biol Assoc UK 94(2):267–284. doi:10.1017/S0025315413000210

    Article  Google Scholar 

  12. Rex MA, Etter RJ (2010) Deep-Sea biodiversity: pattern and scale. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  13. Tompkins-MacDonald RJ, Leys SP (2008) Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Mar Biol 154:973. doi:10.1007/s00227-008-0987-y

    Article  Google Scholar 

  14. Vanreusel A, Hilario A, Ribeiro PA, Menot L, Martínez Arbizu P (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal fauna. Nat–Sci Rep 6:26808. doi:10.1038/srep26808

    CAS  Article  Google Scholar 

  15. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA (2012) Global diversity of sponges (Porifera). PLoS One 7(4):e35105. doi:10.1371/journal.pone.0035105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references


The EcoResponse cruise with the R/V Sonne was financed by the German Ministry of Education and Science BMBF as a contribution to the European project JPI-Oceans “Ecological Aspects of Deep-Sea Mining”. The authors acknowledge funding from BMBF under contract 03F0707E. Furthermore, we want to thank Prof. Dr. Jens Greinert and M.Sc. Florian Gausepohl (GEOMAR – Helmholtz Centre for Ocean Research, Kiel) for support with station maps.

Author information



Corresponding author

Correspondence to Daniel Kersken.

Additional information

This article is registered in ZooBank under

Hyalonema (Onconema) clarioni sp. nov. is registered in ZooBank under

Hyalonema (Prionema) breviradix sp. nov. is registered in ZooBank under

Poliopogon microuncinata sp. nov. is registered in ZooBank under

Communicated by S. Gollner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kersken, D., Janussen, D. & Martínez Arbizu, P. Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part I – Amphidiscophora. Mar Biodiv 48, 545–573 (2018).

Download citation


  • Deep-sea sponges
  • Deep-sea mining
  • Polymetallic nodules
  • Hyalonema
  • Poliopogon