Advertisement

Marine Biodiversity

, Volume 48, Issue 1, pp 545–573 | Cite as

Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part I – Amphidiscophora

  • Daniel Kersken
  • Dorte Janussen
  • Pedro Martínez Arbizu
Original Paper

Abstract

The Clarion-Clipperton Fracture Zone (CCFZ) in the northeastern Pacific is the world’s largest area for potential deep-sea mining of polymetallic nodules. Furthermore, it is one of the largest, most remote and least investigated ecosystems worldwide. Sponges (Porifera) represent one of the main groups of benthic deep-sea megafauna. This is the first study on taxonomy of amphidiscophorid sponges from polymetallic nodule fields in the CCFZ, and includes descriptions of six known and three new species: Hyalonema (Onconema) clarioni sp. nov., Hyalonema (Prionema) breviradix sp. nov. and Poliopogon microuncinata sp. nov.

Keywords

Deep-sea sponges Deep-sea mining Polymetallic nodules Hyalonema Poliopogon 

Notes

Acknowledgements

The EcoResponse cruise with the R/V Sonne was financed by the German Ministry of Education and Science BMBF as a contribution to the European project JPI-Oceans “Ecological Aspects of Deep-Sea Mining”. The authors acknowledge funding from BMBF under contract 03F0707E. Furthermore, we want to thank Prof. Dr. Jens Greinert and M.Sc. Florian Gausepohl (GEOMAR – Helmholtz Centre for Ocean Research, Kiel) for support with station maps.

References

  1. Beaulieu SE (2001a) Life on glass houses: sponge stalk communities in the deep sea. Mar Biol 138:803–817. doi: 10.1007/s002270000500 CrossRefGoogle Scholar
  2. Beaulieu SE (2001b) Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks. Deep Sea Res Part 1 Oceanogr Res Pap 48(4):1121–1137. doi: 10.1016/S0967-0637(00)00055-8 CrossRefGoogle Scholar
  3. Boury-Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithsonian Institution Press, Washington, D.C.Google Scholar
  4. Glover AG, Smith CR (2003) The deep-sea floor ecosystem: currents status and prospects of anthropogenic change by the year 2025. Environ Conserv 30(3):219–241. doi: 10.1017/S0376892903000225 CrossRefGoogle Scholar
  5. Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14. doi: 10.1016/j.oregeorev.2012.12.001 CrossRefGoogle Scholar
  6. Kutti T, Bannister RJ, Fosså JH, Krogness CM, Tjensvoll I, Søvik G (2015) Metabolic responses of the deep-water sponge Geodia barretti to suspended bottom sediment, simulated mine tailings and drill cuttings. J Exp Mar Bio Ecol 473:64–72. doi: 10.1016/j.jembe.2015.07.017 CrossRefGoogle Scholar
  7. Leys SP (2013) Effects of sediment on glass sponges (Porifera, Hexactinellida) and projected effects on glass sponge reefs. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/074Google Scholar
  8. Petersen S, Krätschell A, Augustin N, Jamieson J, Hein JR, Hannington MD (2016) News from the seabed – geological characteristics and resource potential of deep-sea mineral resources. Mar Pol 70:175–187. doi: 10.1016/j.marpol.2016.03.012 CrossRefGoogle Scholar
  9. Purser A, Marcon Y, Hoving HJT, Vecchione M, Piatkowski U, Eason D, Bluhm H, Boetius A (2016) Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr Biol 26:R1247–R1271. doi: 10.1016/j.cub.2016.10.052 CrossRefGoogle Scholar
  10. Reiswig H, Stone R (2013) New glass sponges (Porifera: Hexactinellida) from deep waters of the central Aleutian Islands, Alaska. Zootaxa 3628(1):001–064. doi: 10.11646/zootaxa.3628.1.1 CrossRefGoogle Scholar
  11. Reiswig H (2014) Six new species of glass sponges (Porifera: Hexactinellida) from the north-eastern Pacific Ocean. J Mar Biol Assoc UK 94(2):267–284. doi: 10.1017/S0025315413000210 CrossRefGoogle Scholar
  12. Rex MA, Etter RJ (2010) Deep-Sea biodiversity: pattern and scale. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  13. Tompkins-MacDonald RJ, Leys SP (2008) Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Mar Biol 154:973. doi: 10.1007/s00227-008-0987-y CrossRefGoogle Scholar
  14. Vanreusel A, Hilario A, Ribeiro PA, Menot L, Martínez Arbizu P (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal fauna. Nat–Sci Rep 6:26808. doi: 10.1038/srep26808 Google Scholar
  15. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA (2012) Global diversity of sponges (Porifera). PLoS One 7(4):e35105. doi: 10.1371/journal.pone.0035105 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniel Kersken
    • 1
    • 2
  • Dorte Janussen
    • 2
  • Pedro Martínez Arbizu
    • 1
  1. 1.German Centre for Marine Biodiversity Research (DZMB)WilhelmshavenGermany
  2. 2.Marine Zoology, Senckenberg Research Institute and Nature MuseumFrankfurt am MainGermany

Personalised recommendations