A review of the global diversity and natural history of stalked jellyfishes (Cnidaria, Staurozoa)

  • Lucília S. Miranda
  • Claudia E. Mills
  • Yayoi M. Hirano
  • Allen G. Collins
  • Antonio C. Marques
Review

Abstract

In this review, we present the current state of biodiversity knowledge for the class Staurozoa (Cnidaria), including richness estimates, geographical and bathymetric distributions, substrate use, feeding, behavior, life cycle, and conservation. Based on non-parametric, statistical incidence estimators, the global inventory of 50 known and accepted species of stalked jellyfishes might be regarded as close to complete, but we discuss possible bias related to the lower research effort applied in the Southern Hemisphere. Most of the species occur at mid-latitudes, presenting a distributional pattern that disagrees with the classic pattern of diversity (higher richness near the Equator). Specimens are frequently found on algae, but they have also been reported attached to rocks, seagrasses, shells, mud, sand, coral/gorgonian, sea cucumber, and serpulid tube. Most of the species are found in the intertidal and shallow subtidal regions, but species of Lucernaria have been reported at more than 3000 m deep. Amphipods and copepods are the prey items most frequently reported, and stauromedusae have been observed being actively preyed upon by nudibranch mollusks and pycnogonids. Apparently, stalked jellyfishes have a high sensitivity to anthropic impacts in the environment, and promotion of the class, one of the least studied among Cnidaria, is perhaps the best possible conservation strategy.

Keywords

Stauromedusae Distribution Substrate Development Feeding Behavior 

Supplementary material

12526_2017_721_MOESM1_ESM.pdf (199 kb)
Online Resource 1(PDF 199 kb)
12526_2017_721_MOESM2_ESM.pdf (181 kb)
Online Resource 2(PDF 181 kb)
12526_2017_721_MOESM3_ESM.pdf (185 kb)
Online Resource 3(PDF 184 kb)
12526_2017_721_MOESM4_ESM.pdf (928 kb)
Online Resource 4(PDF 928 kb)
12526_2017_721_MOESM5_ESM.pdf (988 kb)
Online Resource 5(PDF 988 kb)
12526_2017_721_MOESM6_ESM.pdf (955 kb)
Online Resource 6(PDF 954 kb)
12526_2017_721_MOESM7_ESM.pdf (950 kb)
Online Resource 7(PDF 949 kb)
12526_2017_721_MOESM8_ESM.pdf (1000 kb)
Online Resource 8(PDF 999 kb)
12526_2017_721_MOESM9_ESM.pdf (945 kb)
Online Resource 9(PDF 945 kb)
12526_2017_721_MOESM10_ESM.pdf (983 kb)
Online Resource 10(PDF 983 kb)
12526_2017_721_MOESM11_ESM.pdf (945 kb)
Online Resource 11(PDF 945 kb)
12526_2017_721_MOESM12_ESM.pdf (953 kb)
Online Resource 12(PDF 953 kb)
12526_2017_721_MOESM13_ESM.pdf (982 kb)
Online Resource 13(PDF 982 kb)
12526_2017_721_MOESM14_ESM.pdf (948 kb)
Online Resource 14(PDF 948 kb)

References

  1. Allman GI (1860) On the structure of Carduella cyathiformis. A contribution to our knowledge of Lucernariadae. Trans Microsc Soc London VIII:125–128Google Scholar
  2. Amor A (1962) Sobre Stauromedusae del litoral Patagonico. Notas Mus La Plata Zool 20:89–96Google Scholar
  3. Antipa G (1892) Die Lucernariden der Bremer Expedition nach Ostspitzbergen im Jahre 1889. Zool Jb Abt Syst Geogr Biol Tiere 6:377–397Google Scholar
  4. Antipa G (1893) Eine neue Stauromeduse (Capria n. sturdzii n.) Mitt Zool Stn Neapel 10:618–632Google Scholar
  5. Arntz WE (1997) Investigación antártica en biología marina: situación actual, proyectos internacionales y perspectivas. Bol R Soc Esp Hist Nat Sec Biol 93:13–44Google Scholar
  6. Basualdo CV (2011) Choosing the best non-parametric richness estimator for benthic macroinvertebrates databases. Rev Soc Entomol Argent 70:27–38Google Scholar
  7. Beaumont WI (1893) Note on Lucernarians occurring in the neighbourhood of Port Erin, Isle of Man. Proc Trans Liverpool Biol Soc 7:256–263Google Scholar
  8. Bergh RS (1888) Bemaerkninger om Udviklingen af Lucernaria. Vidensk Meddel Naturhist Foren Kjøbenhavn 1888:214–220Google Scholar
  9. Berrill M (1962) The biology of three New England stauromedusae, with a description of a new species. Can J Zool 40:1262–1249CrossRefGoogle Scholar
  10. Broch H (1907) Hydroiden und Medusen. Rep Sec Norw Arct Exp “Fram” 1898–1902 2:1–12Google Scholar
  11. Browne ET (1895) On the variation of Haliclystus octoradiatus. Q J Microsc Sci 38:1–8Google Scholar
  12. Browne ET (1910) Reports of the natural history results of the voyage of the SS Discovery in the Antarctic regions in 1901, under Captain R F Scott RN. Coelentera. V. Medusae. London British Museum (Natural History), LondonGoogle Scholar
  13. Bryan SE, Cook AG, Evans JP, Hebden K, Hurrey L, Colls P, Jell JS, Weatherley D, Firn J (2012) Rapid, long-distance dispersal by pumice rafting. PLoS One 7:e40583PubMedPubMedCentralCrossRefGoogle Scholar
  14. Burridge CP (2002) Antitropicality of Pacific fishes: molecular insights. Environ Biol Fish 65:151–164CrossRefGoogle Scholar
  15. Bushing W (1994) Biogeographic and ecological implication of kelp rafting as a dispersal vector for marine invertebrates. In: Halvorson WL, Maender GJ (eds) The fourth California Islands symposium: update on the status of resources. Santa Barbara Museum of Natural History, Santa Barbara, pp 103–108Google Scholar
  16. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol 49:1–42Google Scholar
  17. Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53:582–596PubMedCrossRefGoogle Scholar
  18. Cairns SD, Gershwin L-A, Brook FJ, Pugh P, Dawson EW, Ocaña VO, Vervoort W, Williams G, Watson JE, Opresko DM, Schuchert P, Hine PM, Gordon DP, Campbell HJ, Wright AJ, Sánchez JA, Fautin DG (2009) Phylum Cnidaria: corals, medusae, hydroids, myxozoans. In: Gordon DP (ed) New Zealand inventory of biodiversity, vol Volume 1. Canterbury University Press, Christchurch, pp 59–101Google Scholar
  19. Calder DR (1983) Nematocysts of stages in the life cycle of Stomolophus meleagris, with keys to scyphistomae and ephyrae of some western Atlantic Scyphozoa. Can J Zool 61:1185–1192CrossRefGoogle Scholar
  20. Carlgren O (1909) Studien über Regenerations- und Regulationserscheinungen. III. Versuche an Lucernaria. K Sven Vetensk Akad Handl 44:1–44Google Scholar
  21. Carlgren O (1930) Die Lucernariden. Furth Zool Res Swed Antarc Exp 1901–1903 2:1–18Google Scholar
  22. Carlgren O (1933) Zur Kenntnis der Lucernariiden Lipkea, Capria und Brochiella. K Fysiogr Sällsk Handl 44:1–19Google Scholar
  23. Carlgren O (1935) Über eine neue Südafrikanische Lucernariidae, Depastromorpha africana n. gen., n. sp., nebst Bemerkungen über den Bau und die Systematik dieser Tiergruppe. K Sven Vetensk Akad Handl 15:1–24Google Scholar
  24. Carlgren O (1938) Eine neue südafrikanische Lucernariidae, Lucernariopsis capensis. K Fysiogr Sällsk Lund Förh 8:1–6Google Scholar
  25. Carlgren O (1956) Actiniaria from depths exceeding 6000 meters. Galathea Rep 2:9–16Google Scholar
  26. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791PubMedCrossRefGoogle Scholar
  27. Child CM (1933) Reconstitution in Haliclystus auricula Clark. Sci Rep Tohoku Imp Univ 8:75–106Google Scholar
  28. Clark HJ (1863) Prodromus of the history, structure, and physiology of the order Lucernariae. J Boston Soc Nat Hist 7:531–567Google Scholar
  29. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarians life cycles. J Evolution Biol 15:418–432CrossRefGoogle Scholar
  30. Collins AG, Daly M (2005) A new deepwater species of Stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biol Bull 228:221–230CrossRefGoogle Scholar
  31. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115PubMedCrossRefGoogle Scholar
  32. Colwell RK (2013) EstimateS, version 9.1.0. Statistical estimation of species richness and shared species from samples (Software and User’s Guide). http://viceroy.eeb.uconn.edu/estimates/index.html. Accessed 15 Jul 2016
  33. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos T Roy Soc B 345:101–118CrossRefGoogle Scholar
  34. Corbin PG (1978) A new species of the stauromedusan genus Lucernariopsis (Coelenterata: Scyphomedusae). J Mar Biol Assoc UK 58:285–290CrossRefGoogle Scholar
  35. Corbin PG (1979) The seasonal abundance of four species of Stauromedusae (Coelenterata: Scyphomedusae) at Plymouth. J Mar Biol Assoc UK 59:385–391CrossRefGoogle Scholar
  36. Cornelius PFS (1992a) Medusa loss in leptolid Hydrozoa (Cnidaria), hydroid rafting, and abbreviated life-cycles among their remote-island faunae: an interim review. Sci Mar 56:245–261Google Scholar
  37. Cornelius PFS (1992b) The Azores hydroid fauna and its origin, with discussion of rafting and medusa suppression. Arquipélago–Life Earth Sci 10:75–99Google Scholar
  38. Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol 6:871–883CrossRefGoogle Scholar
  39. Crame JA (1993) Bipolar molluscs and their evolutionary implications. J Biogeogr 20:145–161CrossRefGoogle Scholar
  40. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL, Stake JL (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182Google Scholar
  41. Davenport J (1998) Note on the trophic relationships of the stauromedusa Haliclystus antarcticus from subantarctic South Georgia. J Mar Biol Assoc UK 78:663–664CrossRefGoogle Scholar
  42. den Hartog JC (1976) A record of the stauromedusa Depastrum cyathiforme (M. Sars, 1846) in France. Trav Stat Biol Roscoff 23:3–4Google Scholar
  43. Eckelbarger KJ, Larson RJ (1993) Ultrastructural study of the ovary of the sessile scyphozoan, Haliclystus octoradiatus (Cnidaria: Stauromedusae). J Morph 218:225–236CrossRefGoogle Scholar
  44. Edmondson CH (1930) New Hawaiian medusae. Bernice P. Bishop Mus Occas Pap 9:1–16Google Scholar
  45. Fabricius O (1780) Fauna Groenlandica: systematice sistens animalia Groenlandiae occidentalis hactenus indagata, quoad nomen specificum, triviale, vernaculumque; synonyma auctorum plurium, descriptionem, locum, victum, generationem, mores, usum, capturamque singuli, prout detegendi occasio fuit, maximaque parte secundum proprias observations.Gottlob Rothe, Hafniae et LipsiaeGoogle Scholar
  46. Falconer A (2013) A stalked jellyfish Stenoscyphus inabai (Kishinouye, 1893) (Stauromedusae), found at the jawbone, Port Phillip Bay, Victoria. Victorian Nat 130:202–207Google Scholar
  47. Fautin DG (2009) Structural diversity, systematics, and evolution of cnidae. Toxicon 54:1054–1064PubMedCrossRefGoogle Scholar
  48. Fautin DG, Malarky L, Soberón J (2013) Latitudinal diversity of sea anemones (Cnidaria: Actiniaria). Biol Bull 224:89–98PubMedCrossRefGoogle Scholar
  49. Gellermann MP (1926) Medusae of the San Juan Archipelago. Thesis, University of WashingtonGoogle Scholar
  50. Goodbody-Gringley G, de Putron S (2016) Brooding corals: planulation patterns, larval behavior, and recruitment dynamics in the face of environmental change. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. The world of medusa and her sisters. Springer, Switzerland, pp 279–289CrossRefGoogle Scholar
  51. Gosse PH (1858) Synopsis of the families, genera, and species of the British actiniae. Ann Mag Nat Hist 3:414–419Google Scholar
  52. Grohmann PA, Magalhães MP, Hirano YM (1999) First record of the order Stauromedusae (Cnidaria, Scyphozoa) from the tropical southwestern Atlantic, with a review of the distribution of Stauromedusae in the Southern Hemisphere. Spec Div 4:381–388Google Scholar
  53. Gwilliam GF (1956) Studies on west coast Stauromedusae. Dissertation, University of CaliforniaGoogle Scholar
  54. Haeckel E (1879) Das system der medusen. I, 2: System der Acraspeden. Zweite Hälfte des Systems der Medusen. Gustav Fischer, JenaGoogle Scholar
  55. Hanaoka K-I (1934) Notes on the early development of a stalked medusa. Proc Imp Acad 10:117–120Google Scholar
  56. Hanaoka K-I (1935) Experiments on the polarity of a stalked medusa Thaumatoscyphus distinctus Kishinouye. Jour Fac Science, Hokkaido Imp Univ, Series VI, Zool 4:159–181Google Scholar
  57. Heeger T, Möller H (1987) Ultrastructural observations on prey capture and digestion in the scyphomedusa Aurelia aurita. Mar Biol 96:391–400CrossRefGoogle Scholar
  58. Helmuth B, Veit RR, Holberton R (1994) Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar Biol 120:421–426CrossRefGoogle Scholar
  59. Highsmith RC (1985) Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar Ecol Prog Ser 25:169–179CrossRefGoogle Scholar
  60. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  61. Hirano YM (1986) Species of Stauromedusae from Hokkaido, with notes on their metamorphosis. Jour Fac Science, Hokkaido Imp Univ, Series VI, Zool 24:182–201Google Scholar
  62. Hirano YM (1997) A review of a supposedly circumboreal species of stauromedusa, Haliclystus auricula (Rathke, 1806). In: den Hartog JC (ed) Proceedings of the 6th international conference on coelenterate biology. The Netherlands. Nationaal Naturhistorisch Museum, Noordwijkerhout, Leiden, pp 247–252Google Scholar
  63. Holst S, Jarms G (2007) Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German bight, North Sea. Mar Biol 151:863–871CrossRefGoogle Scholar
  64. Hornell J (1893) Observations of certain marine animals IV. Abnormalities in Haliclystus (Lucernaria) octoradiatus (preliminary note). Nat Sci 3:33–34Google Scholar
  65. Hyman LH (1940) Observations and experiments on the physiology of medusae. Biol Bull 79:282–296CrossRefGoogle Scholar
  66. Jablonski D, Belanger CL, Berke SK, Huang S, Krug AZ, Roy K, Tomasovych A, Valentine JW (2013) Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. P Natl Acad Sci USA 110:10487–10494CrossRefGoogle Scholar
  67. Jarms G, Tiemann H (1996) On a new hydropolyp without tentacles, Microhydrula limopsicola n. sp., epibiotic on bivalve shells from the Antarctic. Sci Mar 60:109–115Google Scholar
  68. Johnston G (1835) Illustrations in British zoology. Mag Nat Hist J Zool Bot Miner Geol Meteorol 8:59–61Google Scholar
  69. Johnston G (1847) A history of the British Zoophytes. Second Edition, Volume I. John Van Voorst, Paternoster Row, LondonGoogle Scholar
  70. Kahn AS, Matsumoto GI, Hirano YM, Collins AG (2010) Haliclystus californiensis, a “new” species of stauromedusa (Cnidaria: Staurozoa) from the northeast Pacific, with a key to the species of Haliclystus. Zootaxa 2518:49–59Google Scholar
  71. Kassianow N (1901) Studien über das Nervensystem der Lucernariden nebst sonstigen histologischen Beobachtungen über diese Gruppe. Z Wiss Zool 69:287–377Google Scholar
  72. Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488PubMedCrossRefGoogle Scholar
  73. Kikinger R, Salvini-Plawen LV (1995) Development from polyp to stauromedusa in Stylocoronella (Cnidaria: Scyphozoa). J Mar Biol Assoc UK 75:899–912CrossRefGoogle Scholar
  74. Kishinouye K (1893) Mushi-kurage, Depastrum inabai n. sp. Zool Mag 5:416–419Google Scholar
  75. Kishinouye K (1899) Contributions to the natural history of the Commander Islands. XIII. A new species of stalked medusae, Haliclystus stejnegeri. Proc U S Nat Mus 22:125–129CrossRefGoogle Scholar
  76. Kishinouye K (1910) Some medusae of Japanese water. J Coll Science Imp Univ Tokyo 27:1–35Google Scholar
  77. Kowalevsky AO (1884) Zur Entwicklungsgeschichte der Lucernaria. Zool Anz 7:712–719Google Scholar
  78. Kramp PL (1914) Meduser og Siphonophorer. Catalogue of the Medusae and Siphonophora of Greenland. Meddel Grønland 23:381–456Google Scholar
  79. Kramp PL (1943) The zoology of East Greenland. Medusae, Siphonophora and Ctenophora. Meddel Grønland 121:1–20Google Scholar
  80. Kramp PL (1952) Reports on the Lund University Chile Expedition 1948–49. 2. Medusae collected by the Lund University Chile Expedition 1948–49. Lunds Univ Årsskrift 47:1–19Google Scholar
  81. Kramp PL (1957) Medusae. B.A.N.Z. Antarct Res Exp Rep Ser B 6:151–164Google Scholar
  82. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40:292–303CrossRefGoogle Scholar
  83. Kume M, Dan K (1968) Invertebrate Embryology. Translated from Japanese by JC Dan. PROSVETA & NOLIT Publishing House, BelgradeGoogle Scholar
  84. Lamouroux JVF (1815) Mémoire sur la Lucernaire campanulée. Mém Mus Hist Nat II:460–473Google Scholar
  85. Larson RJ (1976) Marine flora and fauna of the northeastern United States. Cnidaria: Scyphozoa. NOAA Tech Rep NMFS 397:1–19Google Scholar
  86. Larson RJ (1980) A new stauromedusa, Kishinouyea corbini (Scyphozoa, Stauromedusae) from the tropical western Atlantic. B Mar Sci 30:102–107Google Scholar
  87. Larson RJ (1988) Kyopoda lamberti gen. nov., sp. nov., an atypical stauromedusa (Scyphozoa, Cnidaria) from the eastern Pacific, representing a new family. Can J Zool 66:2301–2303Google Scholar
  88. Larson RJ, Fautin DG (1989) Stauromedusae of the genus Manania (= Thaumatoscyphus) (Cnidaria, Scyphozoa) in the northeast Pacific, including descriptions of new species Manania gwilliami and Manania handi. Can J Zool 67:1543–1549CrossRefGoogle Scholar
  89. Leitz T (1997) Induction of settlement and metamorphosis of cnidarian larvae: signals and signal transduction. Invertebr Reprod Dev 31:109–122CrossRefGoogle Scholar
  90. Lindberg DR (1991) Marine biotic interchange between the Northern and Southern Hemispheres. Paleobiology 17:308–324Google Scholar
  91. Ling SW (1937) Studies on Chinese Stauromedusae. I. Stauromedusae from Tsingtao. Amoy Mar Biol Bull 3:1–35Google Scholar
  92. López-González PJ, Gili J-M (2000) A new octocoral genus (Cnidaria: Anthozoa) from Antarctic waters. Polar Biol 23:452–458CrossRefGoogle Scholar
  93. Lutz RA, Collins AG, Annis ER, Reed AJ, Bennett KF, Halanych KM, Vrijenhoek RC (2006) Stauromedusan populations inhabiting deep-sea hydrothermal vents along the southern East Pacific Rise. Cah Biol Mar 47:409–413Google Scholar
  94. Lutz RA, Desbruyères D, Shank TM, Vrijenhoek RC (1998) A deep-sea hydrothermal vent community dominated by Stauromedusae. Deep-Sea Res II 45:329–334CrossRefGoogle Scholar
  95. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123:32–42Google Scholar
  96. Mayer AG (1910) Medusae of the world. Volume III. Scyphomedusae. Carnegie Institution publishing, Washington, publication 109Google Scholar
  97. McInnes DE (1989) A stalked jellyfish (Stauromedusae) found at Black Rock, Port Phillip Bay. A first recording in Australia. Victorian Nat 106:86–92Google Scholar
  98. Melo AS, Froehlich CG (2001) Evaluation of methods for estimating macroinvertebrate species richness using individual stones in tropical streams. Freshw Biol 46:711–721CrossRefGoogle Scholar
  99. Meyer A (1865) Über die Reproduktionskraft der Lucernarien. Amtl Ber 40 Verslag Deutsch Naturf Ärzte, Hannover 1865:217Google Scholar
  100. Migot A (1922a) Sur le mode de fixation des Lucernaires à leur support. C R Soc Biol 86:827–829Google Scholar
  101. Migot A (1922b) A propos de la fixation des Lucernaires. C R Soc Biol 87:151–153Google Scholar
  102. Mills CE, Hirano YM (2007) Stauromedusae. In: Denny MW, Gaines SD (eds) Encyclopedia of tidepools and rocky shores. University of California Press, Berkeley, pp 541–543Google Scholar
  103. Miranda LS, Branch GM, Collins AG, Hirano YM, Marques AC, Griffiths CL (2017) Stalked jellyfishes (Cnidaria: Staurozoa) of South Africa, with the description of Calvadosia lewisi sp. nov. Zootaxa 4227:369–389CrossRefGoogle Scholar
  104. Miranda LS, Collins AG, Hirano YM, Mills CE, Marques AC (2016b) Comparative internal anatomy of Staurozoa (Cnidaria), with functional and evolutionary inferences. PeerJ 4:e2594PubMedPubMedCentralCrossRefGoogle Scholar
  105. Miranda LS, Collins AG, Marques AC (2010) Molecules clarify a cnidarian life cycle – the “hydrozoan” Microhydrula limopsicola is an early life stage of the staurozoan Haliclystus antarcticus. PLoS One 5:e10182PubMedPubMedCentralCrossRefGoogle Scholar
  106. Miranda LS, Collins AG, Marques AC (2013) Internal anatomy of Haliclystus antarcticus (Cnidaria, Staurozoa) with a discussion on histological features used in staurozoan taxonomy. J Morph 274:1365–1383PubMedCrossRefGoogle Scholar
  107. Miranda LS, Haddad MA, Mills CE, Marques AC (2012b) Lucernariopsis capensis Carlgren, 1938 (Cnidaria, Staurozoa) in Brazil: first record outside its type locality in South Africa. Zootaxa 3158:60–64Google Scholar
  108. Miranda LS, Hirano YM, Mills CE, Falconer A, Fenwick D, Marques AC, Collins AG (2016a) Systematics of stalked jellyfishes (Cnidaria: Staurozoa). PeerJ 4:e1951PubMedPubMedCentralCrossRefGoogle Scholar
  109. Miranda LS, Marques AC (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna – an example from the staurozoans (Cnidaria). Biota Neotrop 16:e20160169CrossRefGoogle Scholar
  110. Miranda LS, Morandini AC, Marques AC (2009) Taxonomic review of Haliclystus antarcticus Pfeffer, 1889 (Stauromedusae, Staurozoa, Cnidaria), with remarks on the genus Haliclystus Clark, 1863. Polar Biol 32:1507–1519CrossRefGoogle Scholar
  111. Miranda LS, Morandini AC, Marques AC (2012a) Do Staurozoa bloom? A review of stauromedusan population biology. Hydrobiologia 690:57–67CrossRefGoogle Scholar
  112. Müller OF (1776) Zoologiae Danicae Prodromus, seu animalium Daniae et Norvegiae indigenarum, Characteres, Nomina et Synonyma imprimis popularium. Typis Hallageriis, HavniaeGoogle Scholar
  113. Müller WA, Leitz T (2002) Metamorphosis in the Cnidaria. Can J Zool 80:1755–1771CrossRefGoogle Scholar
  114. Nakamura M, Soberón J (2008) Use of approximate inference in an index of completeness of biological inventories. Conserv Biol 23:469–474PubMedCrossRefGoogle Scholar
  115. Naumov DV (1961) Stsifoidnye meduzy morei S.S.S.R. (scyphozoan medusae in the sea of U.S.S.R.) Akad Nauk SSSR, Opredeliteli po Faune SSSR 75:1–98Google Scholar
  116. Oka A (1897) Sur une nouvelle espèce Japonaise du genre Lucernaria. Ann Zool Jap 1:141–145Google Scholar
  117. Okamura B, Gruhl A, Bartholomew JL (2015) Myxozoan evolution, ecology and development. Springer International Publishing (Switzerland), ChamCrossRefGoogle Scholar
  118. Okubo T (1917) Preliminary note on a new genus of Stauromedusae from Hokkaido. Zool Mag 29:317–322Google Scholar
  119. Otto JJ (1976) Early development and planula movement in Haliclystus (Scyphozoa, Stauromedusae). In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 319–329CrossRefGoogle Scholar
  120. Otto JJ (1978) The settlement of Haliclystus planulae. In: Chia FS, Rice M (eds) Settlement and metamorphosis of marine invertebrate larvae. Proceedings of the symposium on settlement and metamorphosis of marine invertebrate larvae, American Zoological Society Meeting, Canada. Elsevier, New York, pp 13–22Google Scholar
  121. Panikkar NK (1944) Occurrence of a stauromedusa on the Indian coast. Curr Sci India 13:238–239Google Scholar
  122. Petersen KW (1979) Development of coloniality in Hydrozoa. In: Larwood G, Rosen BR (eds) Biology and systematics of colonial animals. Academic Press, London, pp 105–139Google Scholar
  123. Pfeffer G (1889) Zur Fauna von Süd-Georgien. Jahrb Hamburg Wiss Anst 6:37–55Google Scholar
  124. Pisani V, Otero-Ferrer F, Lotto S, Maurel P, Goy J (2007) Lipkea ruspoliana Vogt, 1887 (Stauromedusae, Scyphozoa, Cnidaria) dans les aquariums du Musée Océanographique de Monaco. Bull Soc Zool Fr 132:183–190Google Scholar
  125. Prell H (1910) Beiträge zur Kenntnis der Lebensweise einiger Pantopoden. Bergens Mus Aarbog 10:1–30Google Scholar
  126. Redikorzev V (1925) Die Lucernose des Weiβen Meeres. Zool Anz 62:155–157Google Scholar
  127. Russell ES (1904) Notes on Depastrum cyathiforme, Gosse. Ann Mag Nat Hist 13:62–65CrossRefGoogle Scholar
  128. Salovius S, Nyqvist M, Bonsdorff E (2005) Life in the fast lane: macrobenthos use temporary drifting algal habitats. J Sea Res 53:169–180CrossRefGoogle Scholar
  129. Salvini-Plawen LV (1966) Zur Kenntnis der Cnidaria des nordadriatischen Mesopsammon. Veröff Inst Meeresforsch Bremerh 2:165–186Google Scholar
  130. Salvini-Plawen LV (1987) Mesopsammic Cnidaria from Plymouth (with systematic notes). J Mar Biol Assoc UK 67:623–637CrossRefGoogle Scholar
  131. Salvini-Plawen LV (2006) First record of a mature stauromedusa Stylocoronella (Cnidaria) in nature. Cah Biol Mar 47:219–222Google Scholar
  132. Sars M (1846) Fauna littoralis Norvegiae oder Beschreibung und Abbildungen neuer oder wenig bekannter Seethiere, nebst Beobachtungen über die Organisation, Lebensweise u. Entwickelung derselben. Druck und Verlag von Johann Dahk, ChristianiaGoogle Scholar
  133. Singla CL (1976) Ultrastructure and attachment of the basal disk of Haliclystus. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 533–540CrossRefGoogle Scholar
  134. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie AS, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coast and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  135. Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific coast. University of Washington Press, SeattleGoogle Scholar
  136. Thiel M, Gutow L (2005) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol 43:279–418CrossRefGoogle Scholar
  137. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101PubMedCrossRefGoogle Scholar
  138. Tronholm A, Leliaert F, Sansón M, Afonso-Carrillo J, Tyberghein L, Verbruggen H, Clerck D (2012) Contrasting geographical distributions as a result of thermal tolerance and long-distance dispersal in two allegedly widespread tropical brown algae. PLoS One 7:e30813PubMedPubMedCentralCrossRefGoogle Scholar
  139. Uchida T (1929) Studies on the Stauromedusae and Cubomedusae, with special reference to their metamorphosis. Jap Jour Zool 2:103–193Google Scholar
  140. Uchida T (1933) Eine neue Becherqualle aus Hokkaido. Proc Imp Acad 9:450–452Google Scholar
  141. Uchida T (1973) The systematic position of the Stauromedusae. Publ Seto Mar Biol Lab 20:133–139Google Scholar
  142. Uchida T, Hanaoka K-I (1933) On the morphology of a stalked medusa, Thaumatoscyphus distinctus Kishinouye. Jour Fac Science, Hokkaido Imp Univ, Series VI, Zool 2:135–153Google Scholar
  143. Unterseher M, Schnittler M, Dormann C, Sickert A (2008) Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiol Lett 282:205–213PubMedCrossRefGoogle Scholar
  144. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA (2012) Global diversity of sponges (Porifera). PLoS One 7:e35105PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vanhöffen E (1908) Die Lucernariden und Scyphomedusen der Deutschen Südpolar-Expedition 1901–1903. Deutsch Südp-Exp 10:25–49Google Scholar
  146. Vogt C (1886) Sur une médusaire sessile, Lipkea ruspoliana. Arch Sci, Genève 16:356–362Google Scholar
  147. Voight JR (2006) Stauromedusae on the East Pacific Rise. Cah Biol Mar 47:347–352Google Scholar
  148. von Lendenfeld R (1884) The Schyphomedusae of the Southern Hemisphere. P Linn Soc N S W 9:155–169Google Scholar
  149. Weill R (1934) Contribution à l’étude des cnidaires et de leurs nématocystes. I, II. Trav. Stn. Zool. Wimereux 10(11):1–701Google Scholar
  150. Wichmann C-S, Hinojosa IA, Thiel M (2012) Floating kelps in Patagonian fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol 159:2035–2049CrossRefGoogle Scholar
  151. Wietrzykowski W (1910) Sur le développement des Lucernaridés (note préliminaire). Arch Zool Exp Gen 5:10–27Google Scholar
  152. Wietrzykowski W (1911) Seconde note sur le développement des Lucernaires. Arch Zool Exp Gen 6:49–52Google Scholar
  153. Wietrzykowski W (1912) Recherches sur le développement des Lucernaires. Arch Zool Exp Gen 10:1–95Google Scholar
  154. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol S 34:273–309CrossRefGoogle Scholar
  155. Zagal CJ (2004a) Population biology and habitat of the stauromedusa Haliclystus auricula in southern Chile. J Mar Biol Assoc UK 84:331–336CrossRefGoogle Scholar
  156. Zagal CJ (2004b) Diet of stauromedusa Haliclystus auricula from southern Chile. J Mar Biol Assoc UK 84:337–340CrossRefGoogle Scholar
  157. Zagal CJ (2008) Morphological abnormalities in the stauromedusa Haliclystus auricula (Cnidaria) and their possible causes. J Mar Biol Assoc UK 88:259–262CrossRefGoogle Scholar
  158. Zagal CJ, Hirano YM, Mills CE, Edgar GJ, Barrett NS (2011) New records of Staurozoa from Australian coastal waters, with a description of a new species of Lucernariopsis Uchida, 1929 (Cnidaria, Staurozoa, Stauromedusae) and a key to Australian Stauromedusae. Mar Biol Res 7:651–666CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lucília S. Miranda
    • 1
  • Claudia E. Mills
    • 2
  • Yayoi M. Hirano
    • 3
  • Allen G. Collins
    • 4
  • Antonio C. Marques
    • 1
    • 5
  1. 1.Departamento de Zoologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Friday Harbor Laboratories and the Department of BiologyUniversity of WashingtonWashingtonUSA
  3. 3.Coastal Branch of Natural History Museum and InstituteChibaJapan
  4. 4.National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural History, Smithsonian InstitutionWashingtonUSA
  5. 5.Centro de Biologia MarinhaUniversidade de São PauloSão PauloBrazil

Personalised recommendations