Resolving the ambiguities in the identification of two smooth-hound sharks (Mustelus mustelus and Mustelus punctulatus) using genetics and morphology

  • I. A. M. Marino
  • L. Finotto
  • F. Colloca
  • M. Di Lorenzo
  • M. Gristina
  • E. D. Farrell
  • L. Zane
  • C. Mazzoldi
Original Paper


Elasmobranch species are among the most threatened marine fish, and sound biological data for many of them are lacking. In this context, the smooth-hounds (Mustelus spp., Triakidae, Carcharhiniformes) represent an intriguing genus, being characterized by unclear and sometimes contrasting diagnostic traits. Here, we present new insights into the identification of two closely related species, M. mustelus and M. punctulatus. The use of three different molecular markers on a dataset of 588 specimens highlighted a genetic distinction between the two species. However, whereas microsatellites provided unambiguous results in all the samples, the other two markers were not able to assign a fraction of the individuals (6.6% for cytochrome c oxidase subunit 1, 14.4% for Internal Transcribed Spacer 2), suggesting the occurrence of heteroplasmy and introgression due to past hybridisation events. The comparison between morphological traits, previously suggested as diagnostic for species identification, and genetic identification, enabled validation of the most reliable and practical morphological traits for species identification. The shape of the dermal denticles represents the most reliable trait, but its use during fieldwork may be impractical. The black spots on body sides were present almost exclusively in M. punctulatus, allowing its identification; however, their absence is not diagnostic for M. mustelus. The distance of the nostrils and the shape of the mouth are useful to distinguish the two species during fieldwork. Our results will allow an accurate identification of the two species leading to the collection of reliable data on their distribution, life history traits, exploitation and status of conservation.


Morphological identification Genetic identification Microsatellites COI; Triakidae Smooth-hound shark 

Supplementary material

12526_2017_701_MOESM1_ESM.pdf (628 kb)
ESM 1(PDF 628 kb)
12526_2017_701_MOESM2_ESM.xlsx (275 kb)
ESM 2(XLSX 274 kb)


  1. Alquezar DE, Hemmerter S, Cooper RD, Beebe NW (2010) Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol Biol 10:392. doi:10.1186/1471-2148-10-392 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14. doi:10.1111/j.1471-8286.2006.01560.x CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  4. Baino R, Serena F, Ragonese S, Rey J, Rinelli P (2001) Catch composition and abundance of elasmobranchs based on the MEDITS program. Rapp Comm Int Mer Médit 36:234Google Scholar
  5. Barausse A, Correale V, Curkovic A, Finotto L, Riginella E, Visentin E, Mazzoldi C (2014) The role of fisheries and the environment in driving the decline of elasmobranchs in the northern Adriatic Sea. ICES J Mar Sci 71:1593–1603. doi:10.1093/icesjms/fst222 CrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Branstetter S (1984) Triakidae. In: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and the Mediterranean, vol 1. UNESCO, Paris, pp 117–121Google Scholar
  8. Compagno LJV (1984) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of the shark species known to date. Part 2. Carcharhiniformes. Vol. 4. FAO Fisheries Synopsis No. 125. FAO, Rome, pp 251–655Google Scholar
  9. Dulvy NK, Metcalfe JD, Glanville J, Pawson MG, Reynolds JD (2000) Fishery stability, local extinctions, and shifts in community structure in skates. Conserv Biol 14:283–293. doi:10.1046/j.1523-1739.2000.98540.x CrossRefGoogle Scholar
  10. Dulvy NK, Baum JK, Clarke S et al (2008) You can swim but you can’t hide: the global status and conservation of oceanic pelagic sharks and rays. Aquat Conserv 18:459–482. doi:10.1002/aqc.975 CrossRefGoogle Scholar
  11. Dulvy NK, Fowler SL, Musick JA et al (2014) Extinction risk and conservation of the world’s sharks and rays. elife 3:e00590. doi:10.7554/eLife.00590 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ebert DA, Stehmann MFW (2013) Sharks, batoids, and chimaeras of the North Atlantic FAO Species Catalogue for Fishery Purposes. No. 7. FAO, RomeGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Ecology 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x Google Scholar
  14. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  15. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  16. Farrell ED (2010) The life-history and population biology of the starry smooth-hound, Mustelus asterias in the Northeast Atlantic Ocean. PhD thesis, University College DublinGoogle Scholar
  17. Farrell ED, Clarke MW, Mariani S (2009) A simple genetic identification method for Northeast Atlantic smoothhound sharks (Mustelus spp.) ICES J Mar Sci 66:561–565. doi:10.1093/icesjms/fsn218 CrossRefGoogle Scholar
  18. Fischer W, Bauchot ML, Schneider M (1987) Fiches FAO d’identification des espèces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37. Volume II: Vertébrés, pp. 761–1530. Publication préparée par la FAO, résultat d’un accord entre la FAO et la Commission des Communautés Européennes (Projet GCP/INT/422/EEC) financée conjointement par ces deux organisations. FAO, RomeGoogle Scholar
  19. Fortuna CM, Vallini C, Filidei E Jr et al (2010) By-catch of cetaceans and other species of conservation concern during pair trawl fishing operations in the Adriatic Sea (Italy). Chem Ecol 26:65–76. doi:10.1080/02757541003627662 CrossRefGoogle Scholar
  20. Gong L, Shi W, Yang M, Si L, Kong X (2016) Non-concerted evolution in ribosomal ITS2 sequence in Cynoglossus zanzibarensis (Pleuronectiformes: Cynoglossidae). Biochem Syst Ecol 66:181–187. doi:10.1016/j.bse.2016.04.002 CrossRefGoogle Scholar
  21. Heemstra PC (1973) A revision of the shark genus Mustelus Squaliformes: Carcharhinidae. PhD thesis, University of MiamiGoogle Scholar
  22. Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310. doi:10.1126/science.1987647 CrossRefPubMedGoogle Scholar
  23. Hubisz M, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi:10.1111/j.1755-0998.2009.02591.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jardas I (1996) Jadranska ihtiofauna. [Ichthyofauna of the Adriatic Sea] Školska knjiga, ZagrebGoogle Scholar
  25. Jardas I, Pallaoro A, Vrgoč N, Jukić-Peladić S, Dadić V (2008) Red book of sea fishes of Croatia. State Institute for Nature Protection, Ministry of Culture, Republic of CroatiaGoogle Scholar
  26. López JA, Ryburn JA, Fedrigo O, Naylor GJ (2006) Phylogeny of sharks of the family Triakidae (Carcharhiniformes) and its implications for the evolution of carcharhiniform placental viviparity. Mol Phylogenet Evol 40:50–60. doi:10.1016/j.ympev.2006.02.011 CrossRefPubMedGoogle Scholar
  27. Marino IAM, Riginella E, Cariani A, Tinti F, Farrell ED, Mazzoldi C, Zane L (2015a) New molecular tools for the identification of 2 endangered smooth-hound sharks, Mustelus mustelus and Mustelus punctulatus. J Hered 106:123–130. doi:10.1093/jhered/esu064 CrossRefPubMedGoogle Scholar
  28. Marino IAM, Riginella E, Gristina M, Rasotto MB, Zane L, Mazzoldi C (2015b) Multiple paternity and hybridization in two smooth-hound sharks. Sci Rep 5:12919. doi:10.1038/srep12919 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mazzoldi C, Sambo A, Riginella E (2014) The Clodia database: a long time series of fishery data from the Adriatic Sea. Sci Data 1:140018. doi:10.1038/sdata.2014.18 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Morgan JAT, Harry AV, Welch DJ et al (2012) Detection of interspecies hybridisation in Chondrichthyes: hybrids and hybrid offspring between Australian (Carcharhinus tilstoni) and common (C. limbatus) blacktip shark found in an Australian fishery. Conserv Genet 13:455–463. doi:10.1007/s10592-011-0298-6 CrossRefGoogle Scholar
  31. Nieto A, Ralph GM, Comeros-Raynal MT et al (2015) European red List of marine fishes. Publications Office of the European Union, LuxembourgGoogle Scholar
  32. Patwary MU, Kenchington EL, Bird CJ, Zouros E (1994) The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (GMELIN, 1791). J Shellfish Res 13:547–553Google Scholar
  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  34. Quignard JP, Capapé C (1972) Note sur les espèces méditerranéennes du genre Mustelus (Selachii, Galeoidea, Triakidae). Rev Trav Inst Pêches Marit 36:15–29Google Scholar
  35. Rasband WS (1997–2016) ImageJ. U. S. National Institutes of Health. Bethesda, Maryland, USA.
  36. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  37. Rondinini C, Battistoni A, Peronace V, Teofili C (2013) Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, RomaGoogle Scholar
  38. Rousset F (2008) GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  39. Serena F (2005) Field identification guide to the sharks and rays of the Mediterranean and Black Sea. FAO Species Identification Guide for Fishery Purposes. FAO, RomeGoogle Scholar
  40. Serena F, Mancusi C, Haka F, Morey G, Schembri T (2009a) Mustelus punctulatus. The IUCN Red List of Threatened Species 2009: e.T161485A5434647. Downloaded on 24 July 2016
  41. Serena F, Mancusi C, Clò S, Ellis J, Valenti SV (2009b) Mustelus mustelus. The IUCN Red List of Threatened Species 2009: e.T39358A10214694. Downloaded on 06 March 2017
  42. Smith GP (1974) Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol 38:507–513. doi:10.1101/SQB.1974.038.01.055 CrossRefPubMedGoogle Scholar
  43. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641 CrossRefGoogle Scholar
  44. Worm B, Davis B, Kettemer L et al (2013) Global catches, exploitation rates, and rebuilding options for sharks. Mar Policy 40:194–204. doi:10.1016/j.marpol.2012.12.034 CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of PadovaPadovaItaly
  2. 2.IAMC-CNRMazara del ValloItaly
  3. 3.School of Biology & Environmental Science, Science Centre WestUniversity College DublinBelfieldIreland
  4. 4.Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa)RomeItaly

Personalised recommendations