Marine Biodiversity

, Volume 47, Issue 4, pp 1009–1034 | Cite as

Calcinea of the Red Sea: providing a DNA barcode inventory with description of four new species

  • Oliver VoigtEmail author
  • Dirk Erpenbeck
  • Rául A. González-Pech
  • Ali M. Al-Aidaroos
  • Michael L. Berumen
  • Gert Wörheide
Red Sea Biodiversity


The Red Sea is a biodiversity hotspot with a considerable percentage of endemic species for many marine animals. Little is known about the diversity and distribution of calcareous sponges (Porifera, Class Calcarea) in this marginal sea. Here we analysed calcareous sponges of the subclass Calcinea that were collected between 2009 and 2013 at 20 localities in the Red Sea, ranging from the Gulf of Aqaba in the north to the Farasan Islands in the south, to document the species of this region. For this, we applied an integrative approach: We defined OTUs based on the analyses of a recently suggested standard DNA marker, the LSU C-region. The analysis was complemented with a second marker, the internal transcribed spacer, for selected specimens. Ten OTUs were identified. Specimens of each OTU were morphologically examined with spicule preparations and histological sections. Accordingly, our ten OTUs represent ten species, which cover taxonomically a broad range of the subclass. By combining molecular and morphological data, we describe four new species from the Red Sea: Soleneiscus hamatus sp. nov., Ernstia arabica sp. nov., Clathrina rotundata sp. nov., and Clathrina rowi sp. nov.. One additional small specimen was closely related to “Clathrina” adusta, but due to the small size it could not be properly analysed morphologically. By providing the DNA sequences for the morphologically documented specimens in the Sponge Barcoding Database ( we facilitate future DNA-assisted species identification of Red Sea Calcinea, even for small or incomplete samples, which would be insufficient for morphological identification. Application of DNA barcode methods in the subclass will help to further investigate the distribution of Calcinea in the Red Sea and adjacent regions.


Porifera Calcarea Red Sea DNA barcoding Taxonomy 



We would like to thank the Senckenberg Research Institute, in particular the sadly late Michael Türkay and Andreas Broesing, and the King Abdulaziz University, Jeddah, for enabling and supporting the collections, furthermore the team of the Red Sea Biodiversity Surveys in 2012 and 2013 for their help with sampling. For logistical assistance with the Thuwal region sampling, we thank the crew of the M/Y Dream Island (Dream Divers, Jeddah), Jessica Bouwmeester, and the King Abdullah University of Science and Technology (KAUST) Coastal and Marine Resources Core Lab. The scientific research cooperation between King Abdulaziz University (KAU), Faculty of Marine Sciences (FMS), Jeddah, Saudi Arabia, and the Senckenberg Research Institute (SRI), Frankfurt, Germany, in the framework of the Red Sea Biodiversity Project, during which some of the presented material was collected, was funded by KAU GRANT NO. “I/1/432-DSR”. The authors acknowledge, with thanks, KAU and SRI for technical and financial support. We are also grateful to the Egyptian Environmental Affairs Agency (EEAA), especially Mohammed Fouda, for permitting fieldwork in Egypt and to Alexander Keck and Christian Alter for their support during fieldwork in Egypt. We thank two anonymous reviewers for their constructive comments that helped us to improve the manuscript.

Supplementary material

12526_2017_671_MOESM1_ESM.pdf (14.6 mb)
ESM 1 (PDF 14917 kb)
12526_2017_671_MOESM2_ESM.xlsx (53 kb)
Supplementary Table 1 Metadata of calcinean specimens (Collection ID, Sample Locality, GPS coordinates, GenBank accession numbers and Sponge Barcoding Database IDs; GenBank accession numbers of calcaronean outgroup taxa (XLSX 53.2 kb)
12526_2017_671_MOESM3_ESM.pdf (64 kb)
Supplementary Table 2 Comparison of spicule sizes of Arthuria sueziana and Arthuria tenuipilosa (PDF 63.6 kb)


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with image. J Biophotonics Int 11:36–42Google Scholar
  2. Adlard RD, Lester RJG (1995) Development of a diagnostic test for Mikrocytos roughleyi, the aetiological agent of Australian winter mortality of the commercial rock oyster, Saccostrea commercialis (Iredale & Roughley). J Fish Dis 18:609–614CrossRefGoogle Scholar
  3. Allen JE, Whelan S (2014) Assessing the state of substitution models describing noncoding RNA evolution. Genome Biol Evol 6:65–75CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azevedo F, Hajdu E, Willenz P, Klautau M (2009) New records of calcareous sponges (Porifera, Calcarea) from the Chilean coast. Zootaxa 2072:1–30Google Scholar
  5. Azevedo F, Cóndor-Luján B, Willenz P et al (2015) Integrative taxonomy of calcareous sponges (subclass Calcinea) from the Peruvian coast: morphology, molecules, and biogeography. Zool J Linnean Soc 173:787–817CrossRefGoogle Scholar
  6. Borojević R, Boury-Esnault N, Vacelet J (1990) A revision of the supraspecific classification of the subclass Calcinea (Porifera, class Calcarea) Bulletin du Museum National d’Histoire Naturelle Section A. Zoologie Biologie et Ecologie Animales 12:243–276Google Scholar
  7. Borojević R, Boury-Esnault N, Manuel M, Vacelet J (2002) Clathrinida. In: Systema Porifera: A Guide to the Classification of Sponges. pp 1141–1152Google Scholar
  8. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  9. Chombard C, Boury-Esnault N, Tillier S (1998) Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. Syst Biol 47:351–366CrossRefPubMedGoogle Scholar
  10. Dendy A (1891) A monograph of the Victorian sponges, I. The organisation and classification of the Calcarea Homocoela, with descriptions of the Victorian species. Trans Royal Soc Vic 3:1–81Google Scholar
  11. Dendy A (1905) Report on the sponges collected by Professor Herdman, at Ceylon in 1902. In: Herdman WA (ed) Report to the government of Ceylon on the pearl oyster fisheries of the Gulf of Manaar. Royal Society, London, pp 57–246Google Scholar
  12. Dendy A (1913) Report on the calcareous sponges collected by H.M.S. Sealark” in the Indian Ocean. Trans Linnean Soc London, Zool 16:1–29CrossRefGoogle Scholar
  13. DiBattista J, Roberts MB, Bouwmeester J et al (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
  14. Dohrmann M, Voigt O, Erpenbeck D, Wörheide G (2006) Non-monophyly of most supraspecific taxa of calcareous sponges (Porifera, Calcarea) revealed by increased taxon sampling and partitioned Bayesian analysis of ribosomal DNA. Mol Phylogenet Evol 40:830–843CrossRefPubMedGoogle Scholar
  15. Erpenbeck D, Voigt O, Gültas M, Wörheide G (2008) The Sponge Genetree Server—providing a phylogenetic backbone for poriferan evolutionary studies. Zootaxa 1939:58–60Google Scholar
  16. Erpenbeck D, Voigt O, Al-Aidaroos AM et al (2016) Molecular biodiversity of Red Sea demosponges. Mar Pollut Bull 105:507–514CrossRefPubMedGoogle Scholar
  17. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  18. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  19. Haeckel E (1872) Die Kalkschwämme. Eine Monographie in zwei Bänden Text und einem Atlas mit 60 Tafeln Abbildungen. Verlag von Georg Reimer, BerlinGoogle Scholar
  20. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321CrossRefPubMedPubMedCentralGoogle Scholar
  21. Imešek M, Pleše B, Pfannkuchen M et al (2014) Integrative taxonomy of four Clathrina species of the Adriatic Sea, with the first formal description of Clathrina rubra Sarà, 1958. Org Divers Evol 14:21–29CrossRefGoogle Scholar
  22. Jenkin CF (1908) The marine fauna of Zanzibar and British east Africa, from collections made by Cyril crossland, M.A., in the years 1901 & 1902.—The calcareous sponges. Proc Zool Soc London 78:434–456Google Scholar
  23. Kearse M, Moir R, Wilson A et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  24. Keller C (1889) Die Spongienfauna des Rothen Meeres (I. Hälfte). Z Wiss Zool 48:311–405Google Scholar
  25. Keller C (1891) Die Spongienfauna des Rothen Meeres (II. Hälfte). Z Wiss Zool 52:294–368Google Scholar
  26. Klautau M, Borojevic R (2001) Sponges of the genus Clathrina Gray, 1867 from Arraial do Cabo, Brazil. Zoosystema 23:395–410Google Scholar
  27. Klautau M, Valentine C (2003) Revision of the genus Clathrina (Porifera, Calcarea). Zool J Linnean Soc 139:1–62CrossRefGoogle Scholar
  28. Klautau M, Solé-Cava AM, Borojević R (1994) Biochemical systematics of sibling sympatric species of Clathrina (Porifera: Calcarea). Biochem Syst Ecol 22:367–375CrossRefGoogle Scholar
  29. Klautau M, Azevedo F, Cóndor-Luján B et al (2013) A molecular phylogeny for the order Clathrinida rekindles and refines Haeckel’s taxonomic proposal for calcareous sponges. Integr Comp Biol 53:447–461CrossRefPubMedGoogle Scholar
  30. Klautau M, Imešek M, Azevedo F et al (2016) Adriatic calcarean sponges (Porifera, Calcarea), with the description of six new species and a richness analysis. Eur J Taxon 178:1–52Google Scholar
  31. Lavrov DV, Pett W, Voigt O et al (2013) Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol 30:865–880CrossRefPubMedGoogle Scholar
  32. Lavrov DV, Adamski M, Chevaldonné P, Adamska M (2016) Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr Biol 26:86–92CrossRefPubMedGoogle Scholar
  33. Manuel M, Borchiellini C, Alivon E et al (2003) Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst Biol 52:311–333CrossRefPubMedGoogle Scholar
  34. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:2229–2238Google Scholar
  35. Minchin EA (1908) Materials for a monograph of the ascons. II: − The formation of spicules in the genus Leucosolenia, with some notes on the histology of the sponges. Q J Microsc Sci 52:301–355Google Scholar
  36. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574Google Scholar
  38. Rossi AL, de Moraes Russo CA, Solé-Cava AM et al (2011) Phylogenetic signal in the evolution of body colour and spicule skeleton in calcareous sponges. Zool J Linnean Soc 163:1026–1034CrossRefGoogle Scholar
  39. Row R (1909) Reports on the Marine Biology of the Sudanese Red Sea. XIII. Report on the sponges, collected by Mr. Cyril Crossland, 1904–5.–Part I. Calcarea. The Journal of the Linnean Society Zoology 31:182–214, pls. 19–20Google Scholar
  40. Shorthouse DP (2010) SimpleMappr, an online tool to produce publication-quality point maps. In: SimpleMappr. Accessed 22 Jun 2016
  41. Telford MJ, Wise MJ, Gowri-Shankar V (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the Bilateria. Mol Biol Evol 22:1129–1136Google Scholar
  42. Thacker AG (1908) On collections of the Cape Verde Islands fauna made by Cyril Crossland, M.A. The calcareous sponges. Proc Zool Soc London 49:757–782Google Scholar
  43. Van Soest RWM, De Voogd N (2015) Calcareous sponges of Indonesia. Zootaxa 3951:1–105CrossRefPubMedGoogle Scholar
  44. Van Soest RWM, Boury-Esnault N, Hooper JNA, et al. (2016) World Porifera Database. In: World Porifera Database. Accessed 10 Feb 2017
  45. Vargas S, Schuster A, Sacher K et al (2012) Barcoding sponges: an overview based on comprehensive sampling. PLoS One 7, e39345CrossRefPubMedPubMedCentralGoogle Scholar
  46. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968CrossRefGoogle Scholar
  47. Voigt O, Wörheide G (2016) A short LSU rRNA fragment as a standard marker for integrative taxonomy in calcareous sponges (Porifera: Calcarea). Org Divers Evol 16:53–64CrossRefGoogle Scholar
  48. Voigt O, Wülfing E, Wörheide G (2012a) Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea). PLoS One 7, e33417CrossRefPubMedPubMedCentralGoogle Scholar
  49. Voigt O, Eichmann V, Wörheide G (2012b) First evaluation of mitochondrial DNA as a marker for phylogeographic studies of Calcarea: a case study from Leucetta chagosensis. Hydrobiologia 687:101–106CrossRefGoogle Scholar
  50. Wörheide G, Hooper JNA (1999) Calcarea from the Great Barrier Reef. 1: Cryptic Calcinea from Heron Island and Wistari Reef (Capricorn-Bunker Group). Queensland Mus Mem 43:859–891Google Scholar
  51. Wörheide G, Hooper JNA, Degnan BM (2002) Phylogeography of western Pacific Leucetta “chagosensis” (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11:1753–1768CrossRefPubMedGoogle Scholar
  52. Wörheide G, Nichols SA, Goldberg J (2004) Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): Implications for phylogenetic studies. Mol Phylogenet Evol 33:816–830CrossRefPubMedGoogle Scholar
  53. Wörheide G, Erpenbeck D, Menke C (2007) The sponge barcoding project: aiding in the identification and description of poriferan taxa. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, pp 123–128Google Scholar
  54. Wörheide G, Epp L, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Earth and Environmental Sciences, Palaeontology and GeobiologyLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.GeoBio-CenterLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Faculty of Marine Sciences, Marine Biology DepartmentKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  4. 4.Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  5. 5.Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany

Personalised recommendations