Marine Biodiversity

, Volume 47, Issue 3, pp 723–734 | Cite as

Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification to octopus fisheries management

  • Françoise D. LimaEmail author
  • Waldir M. Berbel-Filho
  • Tatiana S. Leite
  • Carlos Rosas
  • Sergio M. Q. Lima
Recent Advances in Knowledge of Cephalopod Biodiversity


The genus Octopus has been treated as a “catch all” taxon because many species have morphological similarities. To investigate the taxonomic status of the Octopus species in the Tropical Northwestern Atlantic (TNA) and the Tropical Southwestern Atlantic (TSA), we sampled Octopus insularis Leite and Haimovici, 2008 in three areas of the northeastern Brazilian coast, four Brazilian oceanic islands and one island in Western Caribbean, Mexico. Samples of Octopus maya Voss and Solís, 1966 were obtained from the cultivation center of the Universidad Nacional Autónoma de México (UNAM) in Sisal city. Specimens previously identified as Octopus vulgaris Cuvier, 1797 were collected in two regions of southeast Brazil, in an industrial port in Progreso city (southern Gulf of Mexico) and from a fish market in Isla Mujeres, Mexico (Western Caribbean). Molecular species attribution was completed based on morphology of fresh specimens identified by an octopus specialist and then checked against previous identification (cultivation center and GenBank sequences). Molecular analysis of both mitochondrial (cytochrome oxidase I) and nuclear genes (elongation factor-1α), including GenBank data, confirmed that one specimen collected at the Western Caribbean from Mexico and identified as O. insularis, shared the same haplotype of the species from the type locality, indicating the occurrence of this species in the Caribbean Sea. Phylogenetic analyses indicated that 21 GenBank sequences from TNA identified as O. vulgaris grouped within the O. insularis clade and are most likely to be to the latter species. The COI analysis also showed that 18 individuals collected in fishing landings and fish markets, previously identified as O. vulgaris, had the identical haplotype of O. maya collected in the UNAM cultivation center. These results corroborate the misidentification of species in Mexican fisheries. Based on molecular and morphological data we extended the distribution of O. insularis to the TNA and revealed cases of misidentification among the most commercially exploited octopus species in this region.


Misidentification Fisheries management Molecular identification Caribbean Sea and Gulf of Mexico 



We are thankful to the Chico Mendes Institute for Biodiversity Conservation (MMA/ICMBIO) and the Brazilian Navy for logistics support in the field work. We thank the Brazilian National Research Council (CNPq 481492/2013-9) and Coordination for the Improvement of Higher Education Personnel (CAPES 23038.004807/2014-01) for financial support and research grant (FD). WMBF receives a Ph.D. grant from Science without Borders Program/CNPq (process 233161/2014-7). We are grateful to Dr. Jan Strugnell for reviewing an earlier version of this manuscript. We would also like to thank Nikeisha Caruana and Adam Amato for reviewing the English grammar.


  1. Acosta-Jofré MS, Sahade R, Laudien J, Chiappero MB (2012) A contribution to the understanding of phylogenetic relationships among species of the genus Octopus (Octopodidae: Cephalopoda). Sci Mar 76:311–318CrossRefGoogle Scholar
  2. Allcock AL, Barratt I, Eléaume M et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep-Sea Res Pt II 58:242–249CrossRefGoogle Scholar
  3. Amor MD, Laptikhovsky V, Norman MD, Strugnell JM (2015) Genetic evidence extends the known distribution of Octopus insularis to the mid-Atlantic islands Ascension and St Helena. J Mar Biol Assoc UK 1–6Google Scholar
  4. Arreguín-Sánchez F, Solís MJ, González De La Rosa ME (2000) Population dynamics and stock assessment for Octopus maya (Cephalopoda: Octopodidae) fishery in the Campeche Bank, Gulf of Mexico. Rev Biol Trop 48:323–331PubMedGoogle Scholar
  5. Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37:114–118CrossRefPubMedGoogle Scholar
  6. Bouth HF, Leite TS, Lima FD, Lins-Oliveira JE (2011) Atol das Rocas: an oasis for Octopus insularis (Cephalopoda: Octopodidae). Zoologia 28:45–52CrossRefGoogle Scholar
  7. Boyle P, Rodhouse PG (2005) Cephalopods: ecology and fisheries. Blackwell Science, OxfordCrossRefGoogle Scholar
  8. Caddy JF, Rodhouse P (1998) Cephalopod and groundfish landings: evidence for ecological change in global fisheries. Rev Fish Biol Fish 8:431–444CrossRefGoogle Scholar
  9. Carlini DB, Young RE, Vecchione M (2001) A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Mol Phylogenet Evol 21:388–97CrossRefPubMedGoogle Scholar
  10. Dai L, Zheng X, Kong L, Li Q (2012) DNA barcoding analysis of Coleoidea (Mollusca: Cephalopoda) from Chinese waters. Mol Ecol Resour 12:437–447CrossRefPubMedGoogle Scholar
  11. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–73CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fadhlaoui-Zid K, Knittweis L, Aurelle D et al (2012) Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene. Comptes Rendus - Biologies 335:625–636CrossRefPubMedGoogle Scholar
  13. FAO (2012) Fisheries and acquaculture statistics 2010. FAO yearbook, RomeGoogle Scholar
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–9PubMedGoogle Scholar
  15. Gabrielsen T, Merkel B, Søreide J et al (2012) Potential misidentifications of two climate indicator species of the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol 35:1621–1628CrossRefGoogle Scholar
  16. Garcia-Vazquez E, Machado-Schiaffino G, Campo D, Juanes F (2012) Species misidentification in mixed hake fisheries may lead to overexploitation and population bottlenecks. Fish Res 114:52–55CrossRefGoogle Scholar
  17. Gusmão J, Lazoski C, Solé-Cava AM (2000) A new species of Penaeus (Crustacea, Penaeidae) revealed by allozyme and cytochrome oxidase I analyses. Mar Biol 137:435–446CrossRefGoogle Scholar
  18. Guzik MT, Norman MD, Crozier RH (2005) Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Mol Phylogenet Evol 37:235–48CrossRefPubMedGoogle Scholar
  19. Hanlon RT, Messenger JB (1996) Cephalopods behaviour. Cambridge University Press, CambridgeGoogle Scholar
  20. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859CrossRefPubMedGoogle Scholar
  21. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. P Roy Soc Lond B Biol 270:313–321CrossRefGoogle Scholar
  22. Jassoud AFJ (2010) Genetic differentiation of eastern and western Atlantic Octopus vulgaris. Dissertation, University of Puerto RicoGoogle Scholar
  23. Jereb P, Roper CFE, Norman MD, Finn JK (2014) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Octopods and vampire squids. FAO species catalogue for fishery purposes, FAO, RomeGoogle Scholar
  24. Juárez O, Rosas C, Arenta-Ortiz M (2012) Phylogenetic relationships of Octopus maya revealed by mtDNA sequences. Cienc Mar 38:563–575CrossRefGoogle Scholar
  25. Judkins HL (2009) Cephalopods of the broad Caribbean: distribution, abundance, and ecological importance. Dissertation, University of South FloridaGoogle Scholar
  26. Kaneko N, Kubodera T, Iguchis A (2011) Taxonomic study of shallow-water Octopuses (Cephalopoda: Octopodidae) in Japan and adjacent waters using mitochondrial genes with perspectives on octopus DNA barcoding. Malacologia 54:97–108Google Scholar
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  28. Keskin E, Atar HH (2011) Genetic divergence of Octopus vulgaris species in the eastern Mediterranean. Biochem Syst Ecol 39:277–282CrossRefGoogle Scholar
  29. Keskin E, Atar HH (2013) DNA barcoding commercially important aquatic invertebrates of Turkey. Mitochondrial DNA 24:440–450CrossRefPubMedGoogle Scholar
  30. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  31. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90CrossRefGoogle Scholar
  32. Leite TS, Haimovici M, Molina W, Warnke K (2008) Morphological and genetic description of Octopus insularis, a new cryptic species in the Octopus vulgaris complex (Cephalopoda: Octopodidae) from the tropical southwestern Atlantic. J Molluscan Stud 74:63–74CrossRefGoogle Scholar
  33. Leite TS, Haimovici M, Mather J, Oliveira JEL (2009) Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: information for management of an artisanal fishery inside a marine protected area. Fish Res 98:85–91CrossRefGoogle Scholar
  34. Leite TS, Batista AT, Lima FD, Mather J (2016) Geographic variability of Octopus insularis diet: from oceanic island to continental populations. Aquat Biol 25:17–27CrossRefGoogle Scholar
  35. Lenz TM, Elias NH, Leite TS, Vidal EAG (2015) First description of the eggs and paralarvae of the tropical octopus, Octopus insularis, under culture conditions. Am Malacol Bull 33:1–9CrossRefGoogle Scholar
  36. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  37. Lima FD, Leite TS, Haimovici M, Oliveira JEL (2014a) Gonadal development and reproductive strategies of the tropical octopus (Octopus insularis) in northeast Brazil. Hydrobiologia 725:7–21CrossRefGoogle Scholar
  38. Lima FD, Leite TS, Haimovici M, Nóbrega MF, Oliveira JEL (2014b) Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil. Fish Res 152:86–92CrossRefGoogle Scholar
  39. Lü ZM, Cui WT, Liu LQ, Li HM, Wu CW (2013) Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences. Genet Mol Res 12:3755–3765CrossRefPubMedGoogle Scholar
  40. Lumpkin R, Garzoli SL (2005) Near-surface circulation in the Tropical Atlantic Ocean. Deep-Sea Res Pt II 52:495–518CrossRefGoogle Scholar
  41. Mangold K (1986) Reproduction. In: Boyle PR (ed) Cephalopod life cycles. II - Comparative Reviews. Academic Press, London, pp 157–200Google Scholar
  42. Mather JA (1988) Daytime activity of juvenile Octopus vulgaris in Bermuda. Malacologia 29:69–76Google Scholar
  43. Mather JA (1993) Octopuses as predators: implications for management. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, TokyoGoogle Scholar
  44. Mather JA, Mather DL (1994) Skin colours and patterns of juvenile Octopus vulgaris (Mollusca, Cephalopoda) in Bermuda. Vie Milieu 44:267–272Google Scholar
  45. Mather JA, O’Dor RK (1991) Foraging strategies and predation risk shape the natural history of juvenile Octopus vulgaris. B Mar Sci 49:256–269Google Scholar
  46. Moguel C, Mascaró M, Avila-Poveda OH, Caamal C, Sanchez A, Pascual C, Rosas C (2010) Morphological, physiological, and behavioral changes during post-hatching development of Octopus maya (Mollusca: Cephalopoda) with special focus on digestive system. Aquat Biol 9:35–48CrossRefGoogle Scholar
  47. Norman MD, Hochberg FG (2005) The current state of octopus taxonomy. Phuket Mar Biol Cent Res Bul 66:127–154Google Scholar
  48. Norman MD, Hochberg FG, Finn JK (2014) World octopod fisheries. In: Jereb P, Roper CFE, Norman MD, Finn JK (eds) Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to Date. Octopods and vampire squids, Food and Agriculture Organization of the United Nations, Rome, pp 9–21Google Scholar
  49. Opitz (1993) A quantitative model of the trophic interactions in a Caribbean coral reef ecosystem. In: Christensen V, Pauly D (eds) Trophic models of aquatic ecosystems. ICLARM Conf Proc, Makati, pp 259–267Google Scholar
  50. Otero J, González AF, Sieiro MP, Guerra A (2007) Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fish Res 85:122–129CrossRefGoogle Scholar
  51. Pliego-Cárdenas R, Hochberg FG, León FJG, Barriga-Sosa IDLA (2014) Close genetic relationships between two american octopuses: Octopus hubbsorum Berry, 1953, and Octopus mimus Gould, 1852. J Shellfish Res 33:293–303CrossRefGoogle Scholar
  52. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  53. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Accessed 26 November 2015
  54. Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72:1101–21CrossRefGoogle Scholar
  55. Rudorff CAG, Lorenzzetti JA, Gherardi DFM, Lins-Oliveira JE (2009) Modeling spiny lobster larval dispersion in the Tropical Atlantic. Fish Res 96:206–215CrossRefGoogle Scholar
  56. SAGARPA (2014) Acuerdo por el que se da a conocer el Plan de Manejo Pesquero de pulpo (O. maya y O. vulgaris) del Golfo de México y Mar Caribe, MexicoGoogle Scholar
  57. Sales JBDL, Rego PS, Hilsdorf AWS, Moreira AA et al (2013) Phylogeographical features of Octopus vulgaris and Octopus insularis in the Southeastern Atlantic based on the analysis of mitochondrial markers. J Shellfish Res 32:325–339CrossRefGoogle Scholar
  58. Schwartz MK, Luikart G, Waples RS (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33CrossRefPubMedGoogle Scholar
  59. Solé-Cava AM, Cunha HA (2012) A genética e a conservação da natureza. In: Matioli SR, Fernandes FMC (eds) Biologia molecular e evolução, 2nd edn. Holos, Ribeirão Preto, pp 217–228Google Scholar
  60. Spalding MD, Fox HE, Allen GR et al (2007) Marine Ecoregions of the world : A bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  62. Taylor AL, McKeown NJ, Shaw PW (2012) Molecular identification of three co-occurring and easily misidentified octopus species using PCR-RFLP techniques. Conserv Genet Resour 4:885–887CrossRefGoogle Scholar
  63. Teske PR, Oosthuizen A, Papadopoulos I, Abstract NPB (2007) Phylogeographic structure of Octopus vulgaris in South Africa revisited: Identification of a second lineage near Durban harbour. Mar Biol 151:2119–2122CrossRefGoogle Scholar
  64. Thorpe JP, Sole-Cava AM, Watts PC (2000) Exploited marine invertebrates: genetics and fisheries. Hydrobiologia 420:165–184CrossRefGoogle Scholar
  65. Tillett BJ, Meekan MG, Broderick D, Field IC, Cliff G, Ovenden JR (2012) Pleistocene isolation, secondary introgression and restricted contemporary gene flow in the pig-eye shark, Carcharhinus amboinensis across northern Australia. Conserv Genet 13:99–115CrossRefGoogle Scholar
  66. Tourinho JL, Solé-Cava AM, Lazoski C (2012) Cryptic species within the commercially most important lobster in the tropical Atlantic, the spiny lobster Panulirus argus. Mar Biol 159:1897–1906CrossRefGoogle Scholar
  67. von der Heyden S, Beger M, Toonen RJ et al (2014) The application of genetics to marine management and conservation: Examples from the Indo-Pacific. Bull Mar Sci 90:123–58CrossRefGoogle Scholar
  68. Vecchione M, Mickevich MF, Fauchald K, Collette BB, Williams AB, Munroe TA, Young RE (2000) Importance of assessing taxonomic adequacy in determining fishing effects on marine biodiversity. ICES J Mar Sci 57:677–681CrossRefGoogle Scholar
  69. Villanueva R, Nozais C, Boletzky SV (1996) Swimming behavior and food searching in planktonic Octopus vulgaris Cuvier from hatching to settlement. J Exp Mar Biol Ecol 208:169–184CrossRefGoogle Scholar
  70. Voight JR (1991) Morphological variation in octopod specimens: reassessing the assumption of preservation-induced deformation. Malacologia 33:241–253Google Scholar
  71. Voss GL, Solis-Ramirez M (1966) Octopus maya, a new species from the Bay of Campeche, Mexico. B Mar Sci 16:615–625Google Scholar
  72. Waples RS, Punt AE, Cope JM (2008) Integrating genetic data into management of marine resources: how can we do it better? Fish Fish 9:423–449CrossRefGoogle Scholar
  73. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201CrossRefGoogle Scholar
  74. Warnke K, Söller R, Blohm D, Saint-Paul U (2004) A new look at geographic and phylogenetic relationships within the species group surrounding Octopus vulgaris (Mollusca, Cephalopoda): indications of very wide distribution from mitochondrial DNA sequences. J Zool Syst Evol Res 42:306–312CrossRefGoogle Scholar
  75. Wenne R, Boudry P, Hemmer-Hansen J, Lubieniecki KP, Was A, Kause A (2007) What role for genomics in fisheries management and aquaculture? Aquat Living Resour 20:241–255CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Françoise D. Lima
    • 1
    • 2
    Email author
  • Waldir M. Berbel-Filho
    • 2
    • 3
  • Tatiana S. Leite
    • 4
  • Carlos Rosas
    • 5
  • Sergio M. Q. Lima
    • 2
  1. 1.Programa de Pós-Graduação em Sistemática e EvoluçãoUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Laboratório de Ictiologia Sistemática e Evolutiva, Departamento de Botânica e ZoologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Department of BioSciences, College of ScienceSwansea UniversitySwanseaWales
  4. 4.Laboratório de Bentos e Cefalópodes, Departamento de Oceanografia e LimnologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
  5. 5.Unidad Multidisciplinaria de Docencia e Investigación, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoSisalMéxico

Personalised recommendations