Semi-automated software for dorsal fin photographic identification of marine species: application to Carcharodon carcharias

  • S. Andreotti
  • P. Holtzhausen
  • M. Rutzen
  • M. Meÿer
  • S. van der Walt
  • B. Herbst
  • C. A. Matthee
Short Communication

Abstract

When dealing with large marine species, individual photographic identification plays a very important part in capture–mark–recapture studies. The success of this method is determined by the consistent correct identification of individuals, but as the number of images in the database increases, the task becomes increasingly time-consuming, affecting the accuracy of the matches. Although a few software packages are available, universally applied methods remain problematic in long-term studies, suggesting the need for species-specific software. This study presents new image recognition software tested on white sharks’ dorsal fins and is based on a dynamic time warping algorithm. The software is specifically designed to improve the matching success of individuals, to standardise the data collection and to increase the overall accuracy when managing a large capture–mark–recapture database.

Keywords

Automated matching Capture–mark–recapture Monitoring system Photographic identification White shark 

References

  1. Anderson SD, Goldman KJ (1996) Photographic evidence of white shark movements in California waters. Calif Fish Game 82:182–186Google Scholar
  2. Anderson SD, Chapple TK, Jorgensen SJ et al (2011) Long-term individual identification and site fidelity of white sharks, Carcharodon carcharias, off California using dorsal fins. Mar Biol 158:1233–1237. doi:10.1007/s00227-011-1643-5 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andreotti S, Rutzen M, Wesche PL et al (2014) A novel categorisation system to organise a large photo identification database for white sharks Carcharodon carcharias. Afr J Mar Sci 36:59–67. doi:10.2989/1814232X.2014.892027 CrossRefGoogle Scholar
  4. Andreotti S, Rutzen M, van der Walt S et al (2016a) An integrated mark-recapture and genetic approach to estimate the population size of white sharks in South Africa. Mar Ecol Prog Ser 552:241–253. doi:10.3354/meps11744 CrossRefGoogle Scholar
  5. Andreotti S, von der Heyden S, Henriques R et al (2016b) New insights into the evolutionary history of white sharks, Carcharodon carcharias. J Biogeogr 43:328–339. doi:10.1111/jbi.12641 CrossRefGoogle Scholar
  6. Bellman R, Kalaba R (1959) On adaptive control processes. IRE Trans Autom Control 4:1–9CrossRefGoogle Scholar
  7. Burgess GH, Bruce BD, Cailliet GM et al (2014) A re-evaluation of the size of the white shark (Carcharodon carcharias) population off California, USA. PLoS One 9:e98078. doi:10.1371/journal.pone.0098078 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Calambokidis J, Barlow J (2004) Abundance of blue and humpback whales in the eastern north pacific estimated by capture-recapture and line-transect methods. Mar Mammal Sci 20:63–85. doi:10.1111/j.1748-7692.2004.tb01141.x CrossRefGoogle Scholar
  9. Carbone C, Christie S, Conforti K et al (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv 4:75–79CrossRefGoogle Scholar
  10. Chapple TK, Jorgensen SJ, Anderson SD et al (2011) A first estimate of white shark, Carcharodon carcharias, abundance off central California. Biol Lett 7:581–583. doi:10.1098/rsbl.2011.0124 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Domeier ML, Nasby-Lucas N (2007) Annual re-sightings of photographically identified white sharks (Carcharodon carcharias) at an eastern Pacific aggregation site (Guadalupe Island, Mexico). Mar Biol 150:977–984. doi:10.1007/s00227-006-0380-7 CrossRefGoogle Scholar
  12. Dureuil M, Towner AV, Ciolfi LG et al (2015) A computer-aided framework for subsurface identification of white shark pigment patterns. Afr J Mar Sci 37:363–371. doi:10.2989/1814232X.2015.1077888 CrossRefGoogle Scholar
  13. Efrat A, Fan Q, Venkatasubramanian S (2007) Curve matching, time warping, and light fields: new algorithms for computing similarity between curves. J Math Imaging Vis 27:203–216. doi:10.1007/s10851-006-0647-0 CrossRefGoogle Scholar
  14. Gowans S, Whitehead H (2001) Photographic identification of northern bottlenose whales (Hyperoodon ampullatus): sources of heterogeneity from natural marks. Mar Mammal Sci 17:76–93. doi:10.1111/j.1748-7692.2001.tb00981.x CrossRefGoogle Scholar
  15. Hammond PS (1990) Capturing whales on film—estimating cetacean population parameters from individual recognition data. Mammal Rev 20:17–22. doi:10.1111/j.1365-2907.1990.tb00099.x CrossRefGoogle Scholar
  16. Hillman GR, Würsig B, Gailey GA et al (2003) Computer-assisted photo-identification of individual marine vertebrates: a multi-species system. Aquat Mamm 29:117–123CrossRefGoogle Scholar
  17. Jackson RM, Roe JD, Wangchuk R et al (2006) Estimating snow leopard population abundance using photography and capture-recapture techniques. Wildl Soc Bull 34:772–781CrossRefGoogle Scholar
  18. Kelly MJ, Noss AJ, Di Bitetti MS et al (2008) Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. J Mammal 89:408–418CrossRefGoogle Scholar
  19. Klimley AP, Anderson SD (1996) Residency patterns of white sharks at the South Farallon Islands, California. In: Klimley AP, Ainley DG (eds) Great white sharks: the biology of Carcharodon carcharias. Academic Press, San Diego, pp 365–373CrossRefGoogle Scholar
  20. Langtimm CA, Beck CA, Edwards HH et al (2004) Survival estimates for florida manatees from the photo-identification of individuals. Mar Mammal Sci 20:438–463. doi:10.1111/j.1748-7692.2004.tb01171.x CrossRefGoogle Scholar
  21. Laroche RK, Kock AA, Dill LM et al (2007) Effects of provisioning ecotourism activity on the behaviour of white sharks Carcharodon carcharias. Mar Ecol Prog Ser 338:199–209. doi:10.3354/meps338199 CrossRefGoogle Scholar
  22. Larsen F, Hammond PS (2004) Distribution and abundance of West Greenland humpback whales (Megaptera novaeangliae). J Zool 263:343–358. doi:10.1017/S095283690400531X CrossRefGoogle Scholar
  23. Marshall AD, Pierce SJ (2012) The use and abuse of photographic identification in sharks and rays. J Fish Biol 80:1361–1379. doi:10.1111/j.1095-8649.2012.03244.x CrossRefPubMedGoogle Scholar
  24. Myers C, Rabiner L, Rosenberg A (1980) Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans Acoust Speech Signal Process 28:623–635CrossRefGoogle Scholar
  25. Robbins R, Fox A (2012) Further evidence of pigmentation change in white sharks, Carcharodon carcharias. Mar Freshw Res 63:1215–1217. doi:10.1071/MF12208 CrossRefGoogle Scholar
  26. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26:43–49CrossRefGoogle Scholar
  27. Schofield G, Katselidis KA, Dimopoulos P et al (2008) Investigating the viability of photo-identification as an objective tool to study endangered sea turtle populations. J Exp Mar Biol Ecol 360:103–108. doi:10.1016/j.jembe.2008.04.005 CrossRefGoogle Scholar
  28. Senin P (2008) Dynamic time warping algorithm review. Information and Computer Science Department, University of Hawaii at Manoa, Honolulu, USA, 23 ppGoogle Scholar
  29. Speed CW, Meekan MG, Bradshaw CJ (2007) Spot the match—wildlife photo-identification using information theory. Front Zool 4:1CrossRefGoogle Scholar
  30. Stanley R (1995) DARWIN: identifying dolphins from dorsal fin images. Eckerd College, St. PetersburgGoogle Scholar
  31. Stevick P, Aguayo-Lobo A, Allen J et al (2004) Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J Cetacean Res Manag 6:109–113Google Scholar
  32. Tappert CC, Suen CY, Wakahara T (1990) The state of the art in online handwriting recognition. IEEE Trans Pattern Anal Mach Intell 12:787–808. doi:10.1109/34.57669 CrossRefGoogle Scholar
  33. Towner AV, Wcisel MA, Reisinger RR et al (2013) Gauging the threat: the first population estimate for white sharks in South Africa using photo identification and automated software. PLoS One 8:e66035. doi:10.1371/journal.pone.0066035 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Van Tienhoven AM, Den Hartog JE, Reijns RA et al (2007) A computer-aided program for pattern-matching of natural marks on the spotted raggedtooth shark Carcharias taurus: computer-aided photo-identification of C. taurus. J Appl Ecol 44:273–280. doi:10.1111/j.1365-2664.2006.01273.x CrossRefGoogle Scholar
  35. Würsig B, Jefferson TA (1990) Methods of photo-identification for small cetaceans. Rep Int Whaling Comm Special Issue 12, pp 43–52Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Evolutionary Genomics Group, Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.Stellenbosch UniversityStellenboschSouth Africa
  3. 3.Applied MathematicsStellenbosch UniversityMatielandSouth Africa
  4. 4.Shark Diving UnlimitedGansbaaiSouth Africa
  5. 5.Department of Environmental Affairs, Branch Oceans and CoastsVictoria & Alfred WaterfrontCape TownSouth Africa

Personalised recommendations