Skip to main content
Log in

A cryptic species in the Pteroclava krempfi species complex (Hydrozoa, Cladocorynidae) revealed in the Caribbean

  • Caribbean Coral Reefs
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Symbiotic relationships on coral reefs involving benthic hosts other than scleractinian corals have been poorly investigated. The hydroid Pteroclava krempfi is a widespread species known to be mainly associated with alcyonacean octocorals in the Indo-Pacific. In the present study, P. krempfi was discovered in association with octocorals of the genus Antillogorgia (Gorgoniidae) at two localities in the Caribbean Sea (St. Eustatius in the eastern Caribbean and Bocas del Toro in the western part), updating its host range with an additional genus and family. The Caribbean specimens showed no morphological differences and the shape of their polyps was consistent with the original P. krempfi description. A multi-locus phylogeny reconstruction of the P. krempfi species complex based on both mitochondrial and nuclear loci revealed three separate molecular clades. Two of them were composed of P. krempfi associated with the families Plexauridae and Alcyoniidae from the Maldives, whereas a new highly supported molecular lineage included all Caribbean specimens of P. krempfi associated with the family Gorgoniidae. These three divergent molecular clades represent distinct cryptic taxa within the P. krempfi species complex, in which the main interspecific difference consists of their host families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202. doi:10.1016/j.cub.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. doi:10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Billard A (1919) Note sur une espèce nouvelle d’hydroïde gymnoblastique (Clava krempfi), parasite d’un Alcyonaire. Bull Mus Natl Hist Nat 25:187–188

    Google Scholar 

  • Boero F, Bouillon J, Gravier-Bonnet N (1995) The life cycle of Pteroclava krempfi (Cnidaria, Hydrozoa, Cladocorynidae), with notes on Asyncoryne philippina (Asyncorynidae). Sci Mar 59:65–76

    Google Scholar 

  • Boero F, Bouillon J, Gravili C (2000) A survey of Zanclea, Halocoryne and Zanclella (Cnidaria, Hydrozoa, Anthomedusae, Zancleidae) with description of new species. Ital J Zool 67: 93–124

  • Bos AR, Hoeksema BW (2015) Cryptobenthic fishes and co-inhabiting shrimps associated with the mushroom coral Heliofungia actiniformis (Fungiidae) in the Davao Gulf, Philippines. Environ Biol Fish 98:1479–1489. doi:10.1007/s10641-014-0374-0

    Article  Google Scholar 

  • Bridge D, Cunningham CW, DeSalle R, Buss LW (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol 12:679–689

    CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Collins AG (2000) Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18S gene sequence data. Sci Mar 64:5–22. doi:10.3989/scimar.2000.64s15

    Article  Google Scholar 

  • Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115. doi:10.1080/10635150500433615

    Article  PubMed  Google Scholar 

  • Fabricius KE, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science (AIMS), Townsville

    Google Scholar 

  • Fisher R, O’Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE et al (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol 25:500–505. doi:10.1016/j.cub.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Fontana S, Keshavmurthy S, Hsieh HJ, Denis V, Kuo C-Y, Hsu C-M et al (2012) Molecular evidence shows low species diversity of coral-associated hydroids in Acropora corals. PLoS One 7:e50130. doi:10.1371/journal.pone.0050130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittenberger A, Gittenberger E (2011) Cryptic, adaptive radiation of endoparasitic snails: sibling species of Leptoconchus (Gastropoda: Coralliophilidae) in corals. Org Divers Evol 11:21–41. doi:10.1007/s13127-011-0039-1

    Article  Google Scholar 

  • Hirose M, Hirose E (2011) A new species of Zanclea (Cnidaria: Hydrozoa) associated with scleractinian corals from Okinawa, Japan. J Mar Biol Assoc UK 92:877–884. doi:10.1017/S0025315411001238

    Article  Google Scholar 

  • Hoeksema BW, Fransen CHJM (2011) Space partitioning by symbiotic shrimp species cohabitating in the mushroom coral Heliofungia actiniformis at Semporna, eastern Sabah. Coral Reefs 30:519. doi:10.1007/s00338-011-0736-4

    Article  Google Scholar 

  • Hoeksema BW, Van der Meij SET, Fransen CHJM (2012) The mushroom coral as a habitat. J Mar Biol Assoc UK 92:647–663. doi:10.1017/S0025315411001445

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90. doi:10.1023/A:1003933603879

    Article  CAS  Google Scholar 

  • Lanfear R, Calcott B, Ho SY, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi:10.1093/molbev/mss020

    Article  CAS  PubMed  Google Scholar 

  • Maggioni D, Montano S, Seveso D, Galli P (2016) Molecular evidence for cryptic species in Pteroclava krempfi (Hydrozoa, Cladocorynidae) living in association with alcyonaceans. Syst Biodivers. doi:10.1080/14772000.2016.1170735

    Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499

    Article  CAS  PubMed  Google Scholar 

  • Miglietta MP, Schuchert P, Cunningham CW (2009) Reconciling genealogical and morphological species in a worldwide study of the Family Hydractiniidae (Cnidaria, Hydrozoa). Zool Scr 38:403–430. doi:10.1111/j.1463-6409.2008.00376.x

    Article  Google Scholar 

  • Montano S, Maggioni D, Galli P, Seveso D, Puce S (2013) Zanclea–coral association: new records from Maldives. Coral Reefs 32:701. doi:10.1007/s00338-013-1023-3

    Article  Google Scholar 

  • Montano S, Galli P, Maggioni D, Seveso D, Puce S (2014) First record of coral-associated Zanclea (Hydrozoa, Zancleidae) from the Red Sea. Mar Biodivers 44:581–584. doi:10.1007/s12526-014-0207-6

    Article  Google Scholar 

  • Montano S, Arrigoni R, Pica D, Maggioni D, Puce S (2015a) New insights into the symbiosis between Zanclea (Cnidaria, Hydrozoa) and scleractinians. Zool Scr 44:92–105. doi:10.1111/zsc.12081

    Article  Google Scholar 

  • Montano S, Maggioni D, Arrigoni R, Seveso D, Puce S, Galli P (2015b) The hidden diversity of Zanclea associated with scleractinians revealed by molecular data. PLoS One 10:e0133084. doi:10.1371/journal.pone.0133084

    Article  PubMed  PubMed Central  Google Scholar 

  • Montano S, Seveso D, Galli P, Puce S, Hoeksema BW (2015c) Mushroom corals as newly recorded hosts of the hydrozoan symbiont Zanclea sp. Mar Biol Res 11:773–779. doi:10.1080/17451000.2015.1009467

    Article  Google Scholar 

  • Montano S, Galli P, Hoeksema BW (2016) First record from the Atlantic: a Zanclea-scleractinian association at St. Eustatius, Dutch Caribbean. Mar Biodivers. doi:10.1007/s12526-015-0432-7

    Google Scholar 

  • Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37:93–108. doi:10.1111/j.1463-6409.2007.00312.x

    Google Scholar 

  • Moura CJ, Cunha MR, Porteiro FM, Rogers AD (2012) Polyphyly and cryptic diversity in the hydrozoan families Lafoeidae and Hebellidae (Cnidaria: Hydrozoa). Invertebr Syst 25:454–470. doi:10.1071/IS11045

    Article  Google Scholar 

  • Pantos O, Bythell JC (2010) A novel reef coral symbiosis. Coral Reefs 29:761–770. doi:10.1007/s00338-010-0622-5

    Article  Google Scholar 

  • Puce S, Cerrano C, Di Camillo CG, Bavestrello G (2008a) Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J Mar Biol Assoc UK 88:1715–1721. doi:10.1017/S0025315408002233

    Article  Google Scholar 

  • Puce S, Di Camillo CG, Bavestrello G (2008b) Hydroids symbiotic with octocorals from the Sulawesi Sea, Indonesia. J Mar Biol Assoc UK 88:1643–1654. doi:10.1017/S0025315408001094

    Article  Google Scholar 

  • Reaka-Kudla ML (1997) The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our natural resources. Joseph Henry/National Academy Press, Washington DC, pp 83–108

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology: a functional evolutionary approach, 7th edn. Thomson-Brooks/Cole, Belmont

    Google Scholar 

  • Schuchert P (2014) High genetic diversity in the hydroid Plumularia setacea: a multitude of cryptic species or extensive population subdivision? Mol Phylogenet Evol 76:1–9. doi:10.1016/j.ympev.2014.02.020

    Article  PubMed  Google Scholar 

  • Seveso D, Montano S, Pica D, Maggioni D, Galli P, Allevi V et al (2015) Pteroclava krempfi-octocoral symbiosis: new information from the Indian Ocean and the Red Sea. Mar Biodivers 46:483–487. doi:10.1007/s12526-015-0368-y

    Article  Google Scholar 

  • Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol Annu Rev 49:43–116. doi:10.1201/b11009-3

    Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi:10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varela C (2010) Tres nuevos registros de hidrozoos (Cnidaria: Hydroidomedusae), para Cuba. Rev Invest Mar 31:104–105

    Google Scholar 

  • Williams GC, Chen JY (2012) Resurrection of the octocorallian genus Antillogorgia for Caribbean species previously assigned to Pseudopterogorgia, and a taxonomic assessment of the relationship of these genera with Leptogorgia (Cnidaria, Anthozoa, Gorgoniidae). Zootaxa 3505:39–52

    Google Scholar 

  • Zheng L, He J, Lin Y, Cao W, Zhang W (2014) 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol Sin 33:55–76. doi:10.1007/s13131-014-0415-8

    Article  Google Scholar 

  • Zietara MS, Arndt A, Geets A, Hellemans B, Volckaert FA (2000) The nuclear rDNA region of Gyrodactylus arcuatus and G. branchicus (Monogenea: Gyrodactylidae). J Parasitol 86:1368–1373. doi:10.1645/0022-3395(2000)086[1368:TNRROG]2.0.CO;2

    Article  CAS  Google Scholar 

  • Zwickl DJ (2006) GARLI: genetic algorithm for rapid likelihood inference. Home page at: http://www.bio.utexas.edu/faculty/antisense/garli/garli.html

Download references

Acknowledgements

Fieldwork participation of the first author was funded through a Martin Fellowship from Naturalis Biodiversity Center. St. Eustatius Marine Parks (STENAPA), Caribbean Netherlands Science Institute (CNSI) and Scubaqua Dive Centre provided logistic support. The authors wish to thank the staff of the Marine Research and High Education Center (MaRHE Center) in Magodhoo Island (Maldives). Finally, we are very grateful to the three anonymous reviewers whose constructive comments helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Montano.

Additional information

Communicated by J. D. Reimer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PDF 1385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montano, S., Maggioni, D., Galli, P. et al. A cryptic species in the Pteroclava krempfi species complex (Hydrozoa, Cladocorynidae) revealed in the Caribbean. Mar Biodiv 47, 83–89 (2017). https://doi.org/10.1007/s12526-016-0555-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0555-5

Keywords

Navigation