Marine Biodiversity

, Volume 47, Issue 3, pp 971–977 | Cite as

An association between a cusk eel (Bassozetus sp.) and a black coral (Schizopathes sp.) in the deep western Indian Ocean

  • Andrew R. Gates
  • Kirsty J. Morris
  • Daniel O. B. Jones
  • Kenneth J. Sulak
Short Communication

Abstract

Detailed observations in the deep sea can reveal previously unknown behaviour, species interactions and fine-scale habitat heterogeneity. Here, the first in situ images of the black coral Schizopathes sp. (Anthozoa: Antipatharia) in the deep western Indian Ocean have been obtained from remotely operated vehicle video footage and time-lapse photography. In these images, there appears to be an association with the cusk eel Bassozetus (Family: Ophidiidae). In the primary observation, chance encounters revealed the fish interacted with the anitpatharian on multiple occasions over several days. Subsequent time-lapse camera footage showed the fish remained almost exclusively underneath the antipatharian for the duration of a 30-h deployment. Excursions from the cover of the antipatharian were for less than 2 min. The primary observation is supported by two similar encounters in the same region. Observed reduction in the tail-beat frequency of the fish under the antipatharian suggests reduced energy requirements for the ophidiid in this position. The observations demonstrate the role that even individual coral colonies play as a source of three-dimensional structure, providing habitat heterogeneity in the deep sea.

Keywords

Antipatharia SERPENT Project Energy conservation Ophidiidae Tail-beat frequency Time-lapse photography 

Supplementary material

Supplementary Material: Video 1

(MTS 1245270 kb)

Supplementary Material: Video 2

(MTS 134070 kb)

Supplementary Material: Video 3

(MPG 867198 kb)

Supplementary Material: Video 4

(MTS 243300 kb)

Supplementary Material: Video 5

(MTS 440070 kb)

References

  1. Angel MV (1973) The description of the female of the ostracod Bathyconchoecia sagittarius Deevey, 1968 (Myodocopida, Halocyprididae). Crustaceana 25:211–219CrossRefGoogle Scholar
  2. Braga-Henriques A et al (2012) Carrying behaviour in the deep-sea crab Paromola cuvieri (Northeast Atlantic). Mar Biodivers 42:37–46. doi:10.1007/s12526-011-0090-3 CrossRefGoogle Scholar
  3. Buhl-Mortensen L, Mortensen PB (2004) Symbiosis in deep-water corals. Symbiosis 37:33–61Google Scholar
  4. Buhl-Mortensen L et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol Evol Perspect 31:21–50. doi:10.1111/j.1439-0485.2010.00359.x CrossRefGoogle Scholar
  5. Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water Scleractinian corals. Bull Mar Sci 81:311–322Google Scholar
  6. Davis WP, Cohen DM (1968) A gobiid fish and palaemonid shrimp living on an antipatharian sea whip in the tropical Pacific. Bull Mar Sci 18:749–761Google Scholar
  7. de Matos V, Gomes-Pereira JN, Tempera F, Ribeiro PA, Braga-Henriques A, Porteiro F (2014) First record of Antipathella subpinnata (Anthozoa, Antipatharia) in the Azores (NE Atlantic), with description of the first monotypic garden for this. Deep-Sea Res II 99:113–121. doi:10.1016/j.dsr2.2013.07.003 CrossRefGoogle Scholar
  8. Deidun A, Andaloro F, Bavestrello G, Canese S, Consoli P, Micallef A, Romeo T, Bo M (2015) First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Ital J Zool 82:271–280. doi:10.1080/11250003.2014.986544
  9. Du Preez C, Tunnicliffe V (2011) Shortspine thornyhead and rockfish (Scorpaenidae) distribution in response to substratum, biogenic structures and trawling. Mar Ecol Prog Ser 425:217–231. doi:10.3354/meps09005 CrossRefGoogle Scholar
  10. Dunn MR, Szabo A, McVeagh MS, Smith PJ (2010) The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep-Sea Res I 57:923–930. doi:10.1016/j.dsr.2010.02.006 CrossRefGoogle Scholar
  11. Gartner JV Jr, Crabtree RE, Sulak KJ (1997) Feeding at depth. In: Randall DJ, Farrell AP (eds) Deep-sea fishes. Academic, San DiegoGoogle Scholar
  12. Gates AR, Jones DOB (2012) Recovery of benthic Megafauna from anthropogenic disturbance at a hydrocarbon drilling well (380 m depth in the Norwegian Sea). PLoS ONE 7. doi:10.1371/journal.pone.0044114
  13. Guinot D, Wicksten M (2015) Camouflage: carrying behaviour, decoration behaviour, and other modalities of concealment in Brachyura. In: Castro P, Davie P, Guinot D, Schram F, Klein CV (eds) Treatise on zoology - anatomy, taxonomy, biology. The Crustacea, vol 9, part C (2 vols) Brill, Brill Online. doi:10.1163/9789004190832_013
  14. Hecker B, Blechschmidt G (1980) Final Historical Coral Report: Epifauna of the Northeastern US Continental Margin. Final report–Canyon assessment study in the Midand North Atlantic areas of the US outer continental shelf by B. Hecker, G. Blechschmidt and P. Gibson. US Department of Interior, Bureau of Land Management, Washington, DC. Contract No. BLM AA551-CT8-49. A1-A114Google Scholar
  15. Hollister CD, Heezen BC (1967) The floor of the Bellingshausen Sea. In: Hersey JB (ed) Deep-sea photography. John Hopkins Press, Baltimore, pp 177–189Google Scholar
  16. Jamieson AJ, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG (2009) Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc R Soc Lond B 276:1037–1045. doi:10.1098/rspb.2008.1670 CrossRefGoogle Scholar
  17. Jones DOB (2009) Using existing industrial remotely operated vehicles for deep-sea science. Zool Scr 38:41–47. doi:10.1111/j.1463-6409.2007.00315.x CrossRefGoogle Scholar
  18. Longmore C et al (2014) Ocean-scale connectivity and life cycle reconstruction in a deep-sea fish. Can J Fish Aqaut Sci 71:1312–1323. doi:10.1139/cjfas-2013-0343 CrossRefGoogle Scholar
  19. Menzies RJ, George RY, Rowe GT (1973) Abyssal environment and ecology of the world oceans. Wiley, New YorkGoogle Scholar
  20. Moore JA, Auster PJ (2009) Commensalism between juvenile cusk eels and pancake urchins on Western North Atlantic seamounts. Bull Peabody Mus Nat Hist 50:381–386CrossRefGoogle Scholar
  21. Moore ABM, Gates AR (2015) Deep-water observation of scalloped hammerhead Sphyrna lewini in the western Indian Ocean off Tanzania. Mar Biodivers Rec 8:e91. doi:10.1017/S1755267215000627 CrossRefGoogle Scholar
  22. Morris K, Tyler PA, Murton B, Rogers AD (2012) Lower bathyal and abyssal distribution of coral in the axial volcanic ridge of the Mid-Atlantic Ridge at 45°N. Deep-Sea Res I 62:32–39. doi:10.1016/j.dsr.2011.11.009 CrossRefGoogle Scholar
  23. Morris KJ et al (2014) A new method for ecological surveying of the abyss using autonomous underwater vehicle photography. Limnol Oceanogr Methods 12:795–809. doi:10.4319/lom.2014.12.795 CrossRefGoogle Scholar
  24. Nielsen JG, Merrett NR (2000) Revision of the cosmopolitan deep-sea genus Bassozetus (Pisces: Ophidiidae) with two new species. Galathea Rep 18:7–56Google Scholar
  25. Ohlberger J, Staaks G, Hölker F (2007) Estimating the active metabolic rate (AMR) in fish based on tail beat frequency (TBF) and body mass. J Exp Zool A 307:296–300CrossRefGoogle Scholar
  26. Opresko DM (1997) Review of the genus Schizopathes (Cnidaria: Antipatharia: Schizopathidae) with a description of a new species from the Indian Ocean. Proc Biol Soc Wash 110:157–166Google Scholar
  27. Relini G, Relini M, Montanari M (2000) An offshore buoy as a small artificial island and a fish-aggregating device (FAD) in the Mediterranean. In: Jones MB, Azevedo JMN, Neto AI, Costa AC, Martins AMF (eds) Island, ocean and deep-sea biology, vol 152. Developments in hydrobiology. Springer, Dordrecht, pp 65–80. doi:10.1007/978-94-017-1982-7_7 CrossRefGoogle Scholar
  28. Rodríguez-Cabello C, Sánchez F (2014) Is Centrophorus squamosus a highly migratory deep-water shark? Deep-Sea Res I 92:1–10. doi:10.1016/j.dsr.2014.06.005 CrossRefGoogle Scholar
  29. Ruxton GD (2009) Non-visual crypsis: a review of the empirical evidence for camouflage to senses other than vision. Philos Trans R Soc Lond B 364:549–557. doi:10.1098/rstb.2008.0228 CrossRefGoogle Scholar
  30. Shapiro OH et al (2014) Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci U S A 111:13391–13396. doi:10.1073/pnas.1323094111 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Trueman CN, MacKenzie KM, Palmer MR (2012) Identifying migrations in marine fishes through stable-isotope analysis. J Fish Biol 81:826–847. doi:10.1111/j.1095-8649.2012.03361.x CrossRefPubMedGoogle Scholar
  32. Wagner D, Luck DG, Toonen RJ (2012) The biology and ecology of black corals (Cnidaria: Anthozia: Hexacorallia: Antipatharia). In: Lesser M (ed) Advances in marine biology, vol 63, vol 63. Advances in marine biology. Elsevier, San Diego, pp 67–132. doi:10.1016/b978-0-12-394282-1.00002-8 Google Scholar
  33. Watling L (2011) Notes on the habitat of the deep-sea caridean shrimp, Bathypalaemonella serratipalma Pequegnat. Crustaceana Monogr 14:707–714Google Scholar
  34. Wicksten MK, Heathman T (2015) New host records for Bathypalaemonella serratipalma (Caridea: Bathypalaemonellidae) in the northern Gulf of Mexico. Mar Biodivers Rec 8:e96. doi:10.1017/S1755267215000779, 94 pagesCrossRefGoogle Scholar
  35. Wicksten M, Nuttall M, Hickerson E (2014) Crustaceans from antipatharians on the banks of the northwestern Gulf of Mexico. Zookeys 457:45–54CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrew R. Gates
    • 1
  • Kirsty J. Morris
    • 1
  • Daniel O. B. Jones
    • 1
  • Kenneth J. Sulak
    • 2
  1. 1.National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
  2. 2.Wetland and Aquatic Research CenterU.S. Geological SurveyGainsvilleUSA

Personalised recommendations