Is meiofauna a good bioindicator of artificial reef impact?

Abstract

Artificial reefs (ARs) are the most common man-made constructions adopted to prevent coastal erosion from wave actions and currents. Despite their worldwide application in coastal management and the documented chemical and physical alterations on surrounding seabeds that they may cause, few studies have been carried out on their impact upon meiofauna. The aim of this survey was to evaluate the potential effects of ARs on the seabed using various meiofaunal descriptors such as the structure of the entire assemblage and of rare taxa, the richness, the diversity indices and the Nematode:Copepod (Ne:Co) ratio. We investigated meiofaunal assemblages of some exposed areas on the Adriatic coast that are protected by ARs and subject to different levels of anthropogenic impact. This last issue was fundamental to examining possible interactions between AR presence and riverine discharges. The results of this study showed that the most efficient meiofaunal descriptors were diversity indices and the Ne:Co ratio, and suggested that the existence of ARs along with uncontrolled riverine discharges may increase anthropogenic impacts upon coastlines. This point is crucial for the conservation and monitoring of beaches because coastal management should be focused on preventing not only coastal erosion, but also possible impacts on marine ecosystem and human health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abelson A, Loya Y (1995) Cross-scale patterns of particulate food acquisition in marine benthic environments. Am Nat 145:848–854. doi:10.1086/285773

    Article  Google Scholar 

  2. Ambrose RF, Anderson TW (1990) Influence of an artificial reef on the surrounding infaunal community. Mar Biol 107:41–52. doi:10.1007/BF01313240

    Article  Google Scholar 

  3. Baguley JG, Montagna PA, Cooksey C, Hyland JL, Bang HW, Morrison C, Kamikawa A, Bennetts P, Saiyo G, Parsons E, Herdener M, Ricci M (2015) Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127–140

    Article  Google Scholar 

  4. Baine M (2001) Artificial reefs: a review of their design, application, management and performance. Ocean Coast Manag 44:241–259. doi:10.1016/S0964-5691(01)00048-5

    Article  Google Scholar 

  5. Balsamo M, Albertelli G, Ceccherelli VU, Coccioni R, Colangelo MA, Curini-Galletti M et al (2010) Meiofauna of the Adriatic Sea: current state of knowledge and future perspective. Chem Ecol 26:45–63. doi:10.1080/02757541003705492

    Article  Google Scholar 

  6. Bertasi F, Colangelo MA, Abbiati M, Ceccherelli VU (2007) Effects of an artificial protection structure on the sandy shore macrofaunal community: the special case of Lido di Dante (Northern Adriatic Sea). Hydrobiologia 586:277–290. doi:10.1007/s10750-007-0701-y

    Article  Google Scholar 

  7. Bianchelli S, Gambi C, Zeppilli D, Danovaro R (2010) Metazoan meiofauna in deep- sea canyons and adjacent open slopes: a large-scale comparison with focus on the rare taxa. Deep-Sea Res Part I 57:420–433. doi:10.1016/j.dsr.2009.12.001

    Article  Google Scholar 

  8. Braeckman U, Vanaverbeke J, Vincx M, van Oevelen D, Soetaert K (2013) Meiofauna metabolism in suboxic sediments: currently overestimated. PloS One 8, e59289

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Brown AC, McLachlan A (1990) Ecology of Sandy Shores. Elsevier Press, Amsterdam

    Google Scholar 

  10. Buchanan JB (1984) Sediment analysis. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell Scientific Publications, Oxford, pp 41–65

    Google Scholar 

  11. Buchanan JB, Kain JM (1971) Measurement of the physical and chemical environment. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Oxford Blackwell Scientific Publication, Oxford, pp 30–52

    Google Scholar 

  12. Carman KR, Todaro MA (1996) Influence of polycyclic aromatic hydrocarbons on the meiobenthic-copepod community of a Louisiana salt marsh. J Exp Mar Biol Ecol 198:37–54

    CAS  Article  Google Scholar 

  13. Carter RWG (1988) Coastal environments. An introduction to the physical, ecological and cultural systems of coastlines. Academic Press, London

    Google Scholar 

  14. Clarke KR, Gorley RN (2001) Primer Version 5. Primer-E, Plymouth

    Google Scholar 

  15. Clarke KR, Warwick RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. Primer-E, Plymouth

    Google Scholar 

  16. Colantoni P, Mencucci D, Nesci O (2004) Coastal processes and cliff recession between Gabicce and Pesaro (northern Adriatic Sea): a case history. Geomorphology 62:257–268

    Article  Google Scholar 

  17. Correggiari A, Frascari F, Miserocchi S, Fontana D (1990) Breakwaters and eutrophication along the Emilia-Romagna coast. In: Vollenweider RA, Marchetti R, Viviani R (eds) Marine Coastal Eutrophication. Elsevier Press, Amsterdam, pp 277–290

    Google Scholar 

  18. Covazzi-Harriague A, Bittoni P (2003) Struttura delle comunità macrobentoniche e contenuto di sostanza organica nell’area costiera compresa tra i fiumi Tavolo e Foglia. In: Coccioni R (ed) Verso la gestione integrata della costa del Monte San Bartolo: risultati di un progetto pilota, vol 1, Quaderni del Centro di Geobiologia, Univ Urbino. Arti Grafiche STIBU, Urbania, pp 77–97

    Google Scholar 

  19. Covazzi-Harriague A, Misic C, Valentini I, Polidori E, Albertelli G, Pusceddu A (2013) Meio- and macrofauna communities in three sandy beaches of the northern Adriatic Sea protected by artificial reefs. Chem Ecol 29:181–195. doi:10.1080/02757540.2012.704911

    CAS  Article  Google Scholar 

  20. Cuadrado DG, Gòmez EA, Ginsberg SS (2005) Tidal and longshore sediment transport associated to a coastal structure. Estuar Coast Shelf Sci 62:291–300. doi:10.1016/j.ecss.2004.09.010

    Article  Google Scholar 

  21. Danovaro R, Gambi C, Mazzola A, Mirto S (2002) Influence of artificial reefs on the surrounding infauna: analysis of meiofauna. ICES J Mar Sci 59:356–362. doi:10.1006/jmsc.2002.1223

    Article  Google Scholar 

  22. Danovaro R, Gambi C, Mirto S, Sandulli R, Ceccherelli VU (2004) Meiofauna. Biol Mar Mediterr 11:55–97

    Google Scholar 

  23. Davis N, Van Blaricom GR, Dayton PK (1982) Man-made structures on marine sediments: effects on adjacent benthic communities. Mar Biol 70:295–303. doi:10.1007/BF00396848

    Article  Google Scholar 

  24. De Troch M, Roelofs M, Riedel B, Grego M (2013) Structural and functional responses of harpacticoid copepods to anoxia in the Northern Adriatic: an experimental approach. Biogeosciences 10:4259–4272. doi:10.5194/bg-10-4259-2013

    Article  Google Scholar 

  25. Fabi G, Spagnolo A (2011) Artificial reefs in the management of Mediterranean Sea fisheries. In: Bortone SA, Brandini FP, Fabi G, Otake S (eds) Artificial reefs in fisheries management. CRC Press, Boca Raton, pp 167–181

    Chapter  Google Scholar 

  26. Fabi G, Luccarini F, Panfili M, Solustri C, Spagnolo A (2002) Effects of an artificial reef on the surrounding soft-bottom community (central Adriatic Sea). ICES J Mar Sci 59:343–349. doi:10.1006/jmsc.2002.1308

    Article  Google Scholar 

  27. Folk LR, Ward WC (1957) Brazos river (Texas), a study in significance on grain size parameters. J Sediment Res 27:3–26. doi:10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  28. Franco P, Jeftic L, Malanotte-Rizzoli P, Michelato A, Orlic M (1982) Descriptive model of the northern Adriatic. Oceanol Acta 5:379–389

    Google Scholar 

  29. Fricke AH, Koopand K, Cliff G (1986) Modification of sediment texture and enhancement of interstitial meiofauna by an artificial reef. Trans R Soc S Afr 46:27–34. doi:10.1080/00359198609520104

    Article  Google Scholar 

  30. Frontalini F, Semprucci F, Coccioni R, Balsamo M, Bittoni P, Covazzi-Harriague A (2011) On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the Central Adriatic Sea (Italy). Environ Monit Assess 180:325–344. doi:10.1007/s10661-010-1791-y

    Article  PubMed  Google Scholar 

  31. Gallignani P, Magagnoli A (1972) Metodologie e tecniche di sedimentologia fisica. Rapp Tec No. 1. CNR Laboratorio per la Geologia Marina, Bologna

    Google Scholar 

  32. Gambi C, Lampadariou N, Danovaro R (2010) Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Adv Oceanogr Limnol 1:167–198

    Article  Google Scholar 

  33. Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments, 2nd edn. Springer Verlag, Heidelberg

    Google Scholar 

  34. Jensen A, Collins K (1996) The use of artificial reefs in crustacean fisheries enhancement. In: European Artificial Reef Research 115–121. Proceedings of the 1st Conference of the European Artificial Reef Research Network, Ancona, Italy, 26–30 March 1996. Southampton Oceanography Centre.

  35. Krumbein WC (1934) Size frequency distributions of sediments. J Sediment Res 4:65–70. doi:10.1306/D4268EB9-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  36. Langhamer O (2010) Effects of wave energy converters on the surrounding soft-bottom macrofauna (west coast of Sweden). Mar Environ Res 69:374–381. doi:10.1016/j.marenvres.2010.01.002

    CAS  Article  PubMed  Google Scholar 

  37. Langlois TJ, Anderson MJ, Babcock RC (2005) Reef-associated predators influence adjacent soft-sediment communities. Ecology 86:1508–1519. doi:10.1890/04-0234

    Article  Google Scholar 

  38. Lee MR, Correa JA, Castilla JC (2001) An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chañaral Case. Mar Pollut Bull 42:606–701

    Google Scholar 

  39. McIntyre AD, Warwick RM (1984) Meiofauna techniques. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell, Oxford, pp 217–244

    Google Scholar 

  40. McLachlan A (1978) A quantitative analysis of the meiofauna and chemistry of the redox potential discontinuity zone in a sheltered sandy beach. Estuar Coast Shelf Sci 7:275–290. doi:10.1016/0302-3524(78)90110-X

    Article  Google Scholar 

  41. Moreno M, Semprucci F, Vezzulli L, Balsamo M, Fabiano M, Albertelli G (2011) The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecol Indic 11:328–336. doi:10.1016/j.ecolind.2010.05.011

    Article  Google Scholar 

  42. Nelson WG, Neff T, Navratil P, Rodda J (1994) Disturbance effects on marine infaunal near stabilised oil-ash reefs: spatial and temporal alteration of impacts. Bull Mar Sci 55:1384

    Google Scholar 

  43. Pianetti A, Bruscolini F, Sabatini L, Colantoni P (2004) Microbial characteristics of marine sediments in bathing area along Pesaro-Gabicce coast (Italy): a preliminary study. J Appl Microbiol 97:682–689. doi:10.1111/j.1365-2672.2004.02352.x

    CAS  Article  PubMed  Google Scholar 

  44. Pielou EC (1969) An Introduction to Mathematical Ecology. Wiley-Interscience, New York

    Google Scholar 

  45. Pilarczyk KW, Zeidler RB (1996) Offshore breakwaters and shore evolution control. A.A. Balkema, Rotterdam

    Google Scholar 

  46. Platt HM, Shaw KM, Lambshead PJD (1984) Nematode species abundance patterns and their use in the detection of environmental perturbations. Hydrobiologia 118:59–66

    Article  Google Scholar 

  47. Principi M, Pignone R, Tramontana M, Trincardi F, Guerrera F, Martelli L et al (2011) Carta Geologica d’Italia alla scala 1:50.000, Foglio 268, Pesaro. ISPRA, Roma

    Google Scholar 

  48. Raffaelli DG, Mason DF (1981) Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull 12:158–163

    Article  Google Scholar 

  49. Relini G, Relini M, Palandri G, Merello S, Beccornia E (2007) History. ecology and trends for artificial reefs of the Ligurian sea. Italy. Hydrobiologia 580:193–217

    Article  Google Scholar 

  50. Santelli A, Punzo E, Scarcella G, Strafella P, Spagnolo A, Fabi G (2013) Decapod crustaceans associated with an artificial reef (Adriatic Sea). Mediterr Mar Sci 14:64–75

    Article  Google Scholar 

  51. Semprucci F, Balsamo M (2012) Free-living marine nematodes as bioindicators: past, present and future perspectives. Environ Res J 6:17–36

    Google Scholar 

  52. Semprucci F, Boi P, Manti A, Covazzi-Harriague A et al (2010) Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgol Mar Res 64:101–115. doi:10.1007/s10152-009-0171-x

    Article  Google Scholar 

  53. Semprucci F, Frontalini F, Covazzi-Harriague A, Coccioni R, Balsamo M (2013a) Meio- and macrofauna in the marine area of the Monte St. Bartolo Natural Park (Central Adriatic Sea, Italy). Sci Mar 77:189–199. doi:10.3989/scimar.03647.26

    Article  Google Scholar 

  54. Semprucci F, Moreno M, Sbrocca S, Rocchi M, Albertelli G, Balsamo M (2013b) The nematode assemblage as a tool for the assessment of marine ecological quality status: a case-study in the Central Adriatic Sea. Mediterr Mar Sci 14:48–57

    Article  Google Scholar 

  55. Semprucci F, Frontalini F, Sbrocca C, Armynot du Châtelet E et al (2015) Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environ Monit Assess 187:251. doi:10.1007/s10661-015-4493-7

    CAS  Article  PubMed  Google Scholar 

  56. Shannon C, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana

    Google Scholar 

  57. Smol KA, Willems JC, Govaere R, Sandee AJJ (1994) Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282(283):197–217

    Article  Google Scholar 

  58. Thomalla F, Vincent CE (2003) Beach response to shore-parallel breakwaters at Sea Palling, Norfolk, UK. Estuar Coast Shelf Sci 56:203–212

    Article  Google Scholar 

  59. Tramontana M, Raffaelli G, Savelli D, Mattioli M, Ferri L (2005) Sedimentary petrography of upper Messinian sandstones in the coastal area of Northern Marche (Italy). Ital J Geosci (Boll Soc Geol It) 4:87–93

    Google Scholar 

  60. Wetzel MA, Fleeger JW, Powers SP (2001) Effects of hypoxia and anoxia on meiofauna: A review with new data from the Gulf of Mexico. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems. Coast. Estuar. Stud., 58. American Geophysical Union, Washington DC, pp 165–184

    Chapter  Google Scholar 

  61. Wilding TA, Sayer MDJ (2002) Evaluating artificial reef performance: approaches to pre- and post-deployment research. ICES J Mar Sci 59:222–230

    Article  Google Scholar 

  62. Wu RS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    CAS  Article  PubMed  Google Scholar 

  63. Zyserman JA, Johnson HK, Zanuttigh B, Martinelli L (2005) Analysis of far-field erosion induced by low-crested rubble-mound structures. Coast Eng 52:977–994

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Semprucci.

Additional information

Communicated by M. Schratzberger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semprucci, F., Sbrocca, C., Baldelli, G. et al. Is meiofauna a good bioindicator of artificial reef impact?. Mar Biodiv 47, 511–520 (2017). https://doi.org/10.1007/s12526-016-0484-3

Download citation

Keywords

  • Meiofauna
  • Artificial reefs
  • River impact
  • Sediment grain size
  • Adriatic Sea
  • Ecological quality assessment