Marine Biodiversity

, Volume 46, Issue 1, pp 59–65 | Cite as

A deep sea community at the Kebrit brine pool in the Red Sea

  • Hege VestheimEmail author
  • Stein Kaartvedt
Original Paper


Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.


DHAB Inactive chimneys Benthic fauna Cnidarians Molluscs Polychaetes 



We are grateful to all help from the other Leg 4 Red Sea Expedition 2013 KAUST participants; André Antunes, Ioannis Georgakakis, Thor A. Klevjer, Perdana Karim Prihartato, Anders Røstad, and Ingrid Solberg. The Red Sea Expedition 2013 was sponsored by KAUST. Leonidas Manousakis and Manolis Kalergis from Hellenic Centre for Marine Research (HCMR) assisted in ROV operations. The captain and crew of the R/V Aegaeo provided support during the entire cruise. Ohoud Mohammed Eid Alharbi assisted with the electron microscopy. We solicited taxonomic opinions from Anders Warén and Yasunori Kano on gatropods, Graham Oliver on bivalves, and Fran Saborido-rey on fish.


  1. Anschutz P, Blanc G, Chatin F et al (1999) Hydrographic changes during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res Part Oceanogr Res Pap 46:1779–1792. doi: 10.1016/S0967-0637(99)00019-9 CrossRefGoogle Scholar
  2. Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433. doi: 10.1111/j.1758-2229.2011.00264.x CrossRefPubMedGoogle Scholar
  3. Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nat Phys Sci 240:153–158. doi: 10.1038/physci240153a0 CrossRefGoogle Scholar
  4. Baco AR, Smith CR (2003) High species richness in deep-sea chemoautotrophic whale skeleton communities. Mar Ecol Prog Ser 260:109–114CrossRefGoogle Scholar
  5. Baker MC, Ramirez-Llodra EZ, Tyler PA et al (2010) Biogeography, ecology, and vulnerability of chemosynthetic ecosystems in the deep sea. In: McIntyre AD (ed) Life worlds oceans. Wiley-Blackwell, pp 161–182Google Scholar
  6. Batang ZB, Papathanassiou E, Al-Suwailem A et al (2012) First discovery of a cold seep on the continental margin of the central Red Sea. J Mar Syst 94:247–253. doi: 10.1016/j.jmarsys.2011.12.004 CrossRefGoogle Scholar
  7. Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Mineral Deposita 26:217–227. doi: 10.1007/BF00209261 CrossRefGoogle Scholar
  8. Braile LW, Keller GR, Wendlandt RF et al (2006) Chapter 5 The east african rift system. In: Olsen KH (ed) Dev Geotecton. Elsevier, pp 213–231, I–IIIGoogle Scholar
  9. Carlier A, Ritt B, Rodrigues CF et al (2010) Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Mar Biol 157:2545–2565. doi: 10.1007/s00227-010-1518-1 CrossRefGoogle Scholar
  10. Coleman RG (1993) Geological evolution of the Red Sea. Oxford monographs on geology and geophysics. Oxford University Press, New York, 186 ppGoogle Scholar
  11. Copley JTP, Young CM (2006) Seasonality and zonation in the reproductive biology and population structure of the shrimp Alvinocaris stactophila (Caridea: Alvinocarididae) at a Louisiana Slope cold seep. Mar Ecol Prog Ser 315:199–209. doi: 10.3354/meps315199 CrossRefGoogle Scholar
  12. Cordes EE, Carney SL, Hourdez S et al (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep Sea Res Part Oceanogr Res Pap 54:637–653. doi: 10.1016/j.dsr.2007.01.001 CrossRefGoogle Scholar
  13. Cuomo MC (1985) Sulphide as a larval settlement cue for Capitella sp I. Biogeochemistry 1:169–181. doi: 10.1007/BF02185040 CrossRefGoogle Scholar
  14. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30CrossRefPubMedPubMedCentralGoogle Scholar
  15. Degens ET, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea—geochemical and geophysical account. Springer, New York, 600 ppCrossRefGoogle Scholar
  16. Dover CLV, Trask JL (2000) Diversity at deep-sea hydrothermal vent and intertidal mussel beds. Mar Ecol Prog Ser 195:169–178. doi: 10.3354/meps195169 CrossRefGoogle Scholar
  17. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740. doi: 10.1038/nrmicro1992 CrossRefPubMedGoogle Scholar
  18. Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) Vent Seep Biota. Springer, Dordrecht, pp 137–167CrossRefGoogle Scholar
  19. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218. doi: 10.1007/s002030050762 CrossRefPubMedGoogle Scholar
  20. Eder W, Schmidt M, Koch M et al (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763. doi: 10.1046/j.1462-2920.2002.00351.x CrossRefPubMedGoogle Scholar
  21. Edgcomb V, Orsi W, Leslin C et al (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167. doi: 10.1007/s00792-008-0206-2 CrossRefPubMedGoogle Scholar
  22. Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29:363–379CrossRefGoogle Scholar
  23. Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293. doi: 10.1038/293291a0 CrossRefGoogle Scholar
  24. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine-invertebrates. Rev Aquat Sci 2:399–436Google Scholar
  25. Galkin SV, Goroslavskaya EI (2010) Bottom fauna associated with Bathymodiolus azoricus (Mytilidae) mussel beds in the hydrothermal fields of the Mid-Atlantic Ridge. Oceanology 50:51–60. doi: 10.1134/S0001437010010066 CrossRefGoogle Scholar
  26. Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330. doi: 10.1016/S0025-3227(97)00055-8 CrossRefGoogle Scholar
  27. Henneke E, De Lange GJ (1990) The distribution of DOC and POC in the water column and brines of the Tyro and Bannock Basins. Mar Chem 31:113–122. doi: 10.1016/0304-4203(90)90033-9 CrossRefGoogle Scholar
  28. LaRock PA, Lauer RD, Schwarz JR et al (1979) Microbial biomass and activity distribution in an anoxic, hypersaline basin. Appl Environ Microbiol 37:466–470PubMedPubMedCentralGoogle Scholar
  29. Levin LA, Ziebis W, Mendoza GF et al (2003) Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Mar Ecol Prog Ser 265:123–139. doi: 10.3354/meps265123 CrossRefGoogle Scholar
  30. McLean JH (1992) Cocculiniform limpets (Cocculinidae and Pyropeltidae) living on whale bone in the deep sea off California. J Molluscan Stud 58:401–414. doi: 10.1093/mollus/58.4.401 CrossRefGoogle Scholar
  31. Monin AS, Litvin VM, Podrazhansky AM et al (1982) Red sea submersible research expedition. Deep Sea Res Part Oceanogr Res Pap 29:361–373. doi: 10.1016/0198-0149(82)90100-5 CrossRefGoogle Scholar
  32. Mullineaux L, Mills S, Sweetman A et al (2005) Vertical, lateral and temporal structure in larval distributions at hydrothermal vents. Mar Ecol Prog Ser 293:1–16. doi: 10.3354/meps293001 CrossRefGoogle Scholar
  33. Oliver PG, Vestheim H, Antunes A, Kaartvedt S (in press) Systematics, functional morphology and distribution of a bivalve (Apachecorbula muriatica gen. et sp. nov.) from the rim of the “Valdivia Deep” brine pool in the Red Sea. J Mar Biol UK. doi:  10.1017/S0025315414001234
  34. Pautot G, Guennoc P, Coutelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature 310:133–136. doi: 10.1038/310133a0 CrossRefGoogle Scholar
  35. Pfannkuche O (1993) Benthic standing stock and metabolic activity in the bathyal Red Sea from 17°N to 27°N. Mar Ecol 14:67–79. doi: 10.1111/j.1439-0485.1993.tb00365.x CrossRefGoogle Scholar
  36. Ritt B, Sarrazin J, Caprais J-C et al (2010) First insights into the structure and environmental setting of cold-seep communities in the Marmara Sea. Deep Sea Res Part Oceanogr Res Pap 57:1120–1136. doi: 10.1016/j.dsr.2010.05.011 CrossRefGoogle Scholar
  37. Ryan WBF, Thorndike EM, Ewing M, Ross DA (1969) Suspended matter in the Red Sea brines and its detection by light scattering. In: Degens ET, Ross DA (eds) Hot brines recent heavy met. Depos Red Sea. Springer, Berlin, pp 153–157CrossRefGoogle Scholar
  38. Sasaki T, Warén A, Kano Y et al (2010) Gastropods from recent hot vents and cold seeps: systematics, diversity and life strategies. In: Kiel S (ed) Vent Seep Biota. Springer, Netherlands, pp 169–254CrossRefGoogle Scholar
  39. Scholten JC, Stoffers P, Garbe-Schönberg D, Moammar M (2000) Hydrothermal mineralization in the Red Sea. CRC Mar Sci Ser 17Google Scholar
  40. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II Top Stud Oceanogr 45:517–567. doi: 10.1016/S0967-0645(97)00074-X CrossRefGoogle Scholar
  41. Stock A, Breiner H-W, Pachiadaki M et al (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34. doi: 10.1007/s00792-011-0401-4 CrossRefPubMedGoogle Scholar
  42. Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166. doi: 10.1038/205165a0 CrossRefGoogle Scholar
  43. Taylor JD, Glover EA (2010) Chemosymbiotic bivalves. In: Kiel S (ed) Vent Seep Biota. Springer, Netherlands, pp 107–135CrossRefGoogle Scholar
  44. Tsutsumi H, Wainright S, Montani S et al (2001) Exploitation of a chemosynthetic food resource by the polychaete Capitella sp. I. Mar Ecol Prog Ser 216:119–127. doi: 10.3354/meps216119 CrossRefGoogle Scholar
  45. Vermeij GJ (1993) A natural history of shells. Princeton University Press, Princeton, 207 ppGoogle Scholar
  46. Warén A, Bouchet P (1989) New gastropods from East Pacific hydrothermal vents. Zool Scr 18:67–102. doi: 10.1111/j.1463-6409.1989.tb00124.x CrossRefGoogle Scholar
  47. Wishner KF (1980) The biomass of the deep-sea benthopelagic plankton. Deep Sea Res Part Oceanogr Res Pap 27:203–216. doi: 10.1016/0198-0149(80)90012-6 CrossRefGoogle Scholar
  48. Young RA, Ross DA (1974) Volcanic and sedimentary processes in the Red Sea axial trough. Deep Sea Res Oceanogr Abstr 21:289–297. doi: 10.1016/0011-7471(74)90100-4 CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.King Abdullah University of Science and TechnologyRed Sea Research CenterThuwalSaudi Arabia
  2. 2.Department of BiosciencesUniversity of OsloBlindernNorway

Personalised recommendations