Advertisement

Marine Biodiversity

, Volume 45, Issue 2, pp 321–326 | Cite as

Transplantation of corals into a new environment results in substantial skeletal loss in Acropora tenuis

  • Melissa M. Rocker
  • Simon J. Brandl
Short Communication

Abstract

The degradation of coral reefs, specifically the loss of structural biomass created by coral skeletons, is an important issue in coral reef science. In this study, we give evidence for high skeletal loss in corals transplanted from a high turbidity environment to a low turbidity environment. Specifically, we show that in colonies of Acropora tenuis, significantly higher skeletal loss occurred in colonies from Geoffrey Bay (Magnetic Island, Australia, ∼8 km offshore) transplanted to Pelorus Island (Palm Islands, Australia, ∼16 km offshore), when compared to control colonies and their reciprocally transplanted counterparts. These results may suggest marked intraspecific differences in the physiological condition of coral colonies, possibly causing selective predation by corallivorous organisms, strengthening the need for detailed investigations of the underlying causes as well as the consequences of skeletal loss in an important branching species of coral, Acropora tenuis.

Keywords

Skeletal loss Coral physiology Corallivory 

Notes

Acknowledgements

We thank S Noonan and the MMP team for field support; J Rizzari, J Casey, and four anonymous reviewers for helpful comments in improving this manuscript. This study was supported by the Australian Research Council Centre of Excellence for Coral Reef Studies and the Australian Institute of Marine Science. Grants were provided by the National Environmental Research Program and the PADI Foundation.

References

  1. Abrego D, van Oppen MJH, Willis BL (2009) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531. doi: 10.1111/j.1365-294X.2009.04275.x PubMedCrossRefGoogle Scholar
  2. Anthony K (2006) Enhanced energy status of corals on coastal, high-turbidity reefs. Mar Ecol Prog Ser 319:111–116. doi: 10.3354/meps319111 CrossRefGoogle Scholar
  3. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253. doi: 10.1016/S0022-0981(00)00237-9 PubMedCrossRefGoogle Scholar
  4. Barshis DJ, Stillman JH, Gates RD et al (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720. doi: 10.1111/j.1365-294X.2010.04574.x PubMedCrossRefGoogle Scholar
  5. Bay LK, Ulstrup KE, Nielsen HB et al (2009) Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol Ecol 18:3062–3075. doi: 10.1111/j.1365-294X.2009.04257.x PubMedCrossRefGoogle Scholar
  6. Bay LK, Guérécheau A, Andreakis N et al (2013) Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora. PLoS ONE 8:e61736. doi: 10.1371/journal.pone.0061736 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82. doi: 10.3354/meps229073 CrossRefGoogle Scholar
  8. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312. doi: 10.1098/rspb.2006.3567 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bonaldo RM, Krajewski JP, Bellwood DR (2011) Relative impact of parrotfish grazing scars on massive Porites corals at Lizard Island, Great Barrier Reef. Mar Ecol Prog Ser 423:223–233. doi: 10.3354/meps08946 CrossRefGoogle Scholar
  10. Bonaldo RM, Welsh JQ, Bellwood DR (2012) Spatial and temporal variation in coral predation by parrotfishes on the GBR: evidence from an inshore reef. Coral Reefs 31:263–272. doi: 10.1007/s00338-011-0846-z CrossRefGoogle Scholar
  11. Bruckner AW, Bruckner RJ (1998) Destruction of coral by Sparisoma viride. Coral Reefs 17:350. doi: 10.1007/s003380050138 CrossRefGoogle Scholar
  12. Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307. doi: 10.1111/j.1467-2979.2008.00290.x CrossRefGoogle Scholar
  13. Cumming RL, McCorry D (1988) Corallivorous gastropods in Hong Kong. Coral Reefs 17:178. doi: 10.1007/s003380050112 CrossRefGoogle Scholar
  14. De’ath G, Fabricius K (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20:840–850. doi: 10.1890/08-2023.1 PubMedCrossRefGoogle Scholar
  15. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the great barrier reef and its causes. Proc Natl Acad Sci USA :1–5. doi:  10.1073/pnas.1208909109
  16. Fabricius KE, De’ath G, Humphrey C et al (2013) Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef. Estuar Coast Shelf Sci 116:57–65. doi: 10.1016/j.ecss.2012.03.010 CrossRefGoogle Scholar
  17. Grand HM, Fabricius KE (2010) Relationship of internal macrobioeroder densities in living massive Porites to turbidity and chlorophyll on the Australian Great Barrier Reef. Coral Reefs 30:97–107. doi: 10.1007/s00338-010-0670-x CrossRefGoogle Scholar
  18. Hawkins JP, Roberts CM (1992) Effects of recreational SCUBA diving on fore-reef slope communities of coral reefs. Biol Conserv 62:171–178. doi: 10.1016/0006-3207(92)91045-T CrossRefGoogle Scholar
  19. Hobbs JA (2013) Obligate corallivorous filefish (Oxymonacanthus longirostris) swtiches diet from Acropora to Pocillipora corals following habitat loss. Mar Biodivers 43:175–176. doi: 10.1007/s12526-013-0155-6 CrossRefGoogle Scholar
  20. Hoeksema BW, Scott C, True JD (2013) Dietary shift in corallivorous Drupella snails following a major bleaching event at Koh Tao, Gulf Thailand. Coral Reefs 32:423–428. doi: 10.1007/s00338-012-1005-x CrossRefGoogle Scholar
  21. Littler MM, Taylor PR, Littler DS (1989) Complex interactions in the control of coral zonation on a Caribbean reef flat. Oecologia 80:331–340. doi: 10.1007/BF00379034 CrossRefGoogle Scholar
  22. Motta PJ (1980) The mechanics and functions of jaw protrusion in butterflyfishes (Chaetodontidae). Am Zool 20:930–930Google Scholar
  23. Neudecker S (1977) Transplant experiments to test the effect of fish grazing on coral distribution. Proc 3rd Int Coral Reef Symp, Miami, pp 317–323Google Scholar
  24. Neudecker S (1979) Effect of grazing and browsing fishes on the zonation of corals in Guam. Ecology 60:666–672. doi: 10.2307/1936602 CrossRefGoogle Scholar
  25. Page CA, Willis BL (2008) Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 27:257–272. doi: 10.1007/s00338-007-0317-8 CrossRefGoogle Scholar
  26. Pisapia C, Hennige S, Haapkylä J et al (2012) Morphological changes in polyp structure of massive coral species in clear and turbid waters. Bull Mar Sci 88:183–191. doi: 10.5343/bms.2010.1086 CrossRefGoogle Scholar
  27. Pratchett MS (2007) Feeding preferences of Acanthaster planci (Echinodermata: Asteroidea) under controlled conditions of food availablity. Pac Sci 61:113–120. doi: 10.1353/psc.2007.0011 CrossRefGoogle Scholar
  28. Risk MJ, Sammarco PW, Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86. doi: 10.1007/BF00303427 CrossRefGoogle Scholar
  29. Rotjan RD, Lewis SM (2005) Selective predation by parrotfishes on the reef coral Porites astreoides. Mar Ecol Prog Ser 305:193–201. doi: 10.3354/meps305193 CrossRefGoogle Scholar
  30. Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91. doi: 10.3354/meps07531 CrossRefGoogle Scholar
  31. Rotjan RD, Lewis SM (2009) Predators selectively graze reproductive structures in a clonal marine organism. Mar Biol 156:569–577. doi: 10.1007/s00227-008-1108-7 CrossRefGoogle Scholar
  32. Rotjan RD, Dimond JL, Thornhill DJ et al (2006) Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25:361–368. doi: 10.1007/s00338-006-0120-y CrossRefGoogle Scholar
  33. Thompson A, Costello P, Davidson J, et al. (2011) Reef rescue marine monitoring program: final report of AIMS activites 2011 inshore coral reef monitoring. 128Google Scholar
  34. Tribollet AE, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432. doi: 10.1007/s00338-002-0267-0 Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  3. 3.AIMS@JCU, Australian Institute of Marine ScienceJames Cook UniversityTownsvilleAustralia

Personalised recommendations