Marine Biodiversity

, Volume 44, Issue 3, pp 391–401 | Cite as

Diversity and composition of macro- and meiofaunal carapace epibionts of the hawksbill sea turtle (Eretmochelys imbricata Linnaeus, 1822) in Atlantic waters

  • G. V. V. Corrêa
  • J. Ingels
  • Y. V. Valdes
  • V. G. Fonsêca-Genevois
  • C. M. R. Farrapeira
  • G. A. P. Santos
Diversity of marine meiofauna on the coast of Brazil


The presence of macro-epibionts on turtle carapaces is a well-known phenomenon, whereby carapaces are occupied by dynamic and fully functional epibiont communities. However, meiofaunal organisms have been largely ignored in turtle shell studies despite their omnipresence and higher abundances and diversity than the macrofauna. Epifauna from the hawksbill sea turtle Eretmochelys imbricata was investigated during summer 2010 with the aim to advance our knowledge on meiofaunal epibiont communities on turtle carapaces and gain insights into their interaction with settled macrofauna. Eighteen epibiont higher taxa were found (17 meiofauna, 5 macrofauna), 5 of which are common for macro- and meiofauna. Meiofauna was present on all turtle carapaces, but macrofauna occurred on only 8 out of 19 investigated carapaces, suggesting that carapace colonization by meiofauna precedes macrofauna recruitment. In addition, the macrofauna embedded on the carapaces increased the microhabitat complexity, favoring richer and more abundant meiofauna communities. The significant positive correlations between meiofauna and macrofauna taxa (up to 90 %) suggests the presence of mutual facilitating processes and indicates the positive effects between meio- and macrofaunal epibionts important for their recruitment and establishment. The hawksbill sea turtle carapaces were occupied by fully functional and active epifaunal communities, with adult and reproductive stages for most meiofaunal and macrofaunal taxa. Turtle carapaces can therefore be seen as a biological substrate that can serve as a platform for faunal dispersal, as has been observed for barnacles, enhancing the geographical distribution of several species through sea turtle migration. In addition to the main focus of this paper on meio- and macrofaunal epibiont communities, we provide an updated list of taxa found on carapaces of the hawksbill sea turtle and discuss the geographical scope and dispersion potential of some of these taxa.


Eretmochelys imbricata Meiofauna Macrofauna Bioengineering Facilitation Biological interactions Epifaunal recruitment 

Supplementary material

12526_2013_189_MOESM1_ESM.docx (25 kb)
Table S1(DOCX 25.4 kb)


  1. Abelson A, Miloh T, Loya Y (1993) Flow patterns induced by substrata and body morphologies of benthic organisms, and their roles in determining availability of food particles. Limnol Oceanogr 38:1116–1124CrossRefGoogle Scholar
  2. Anderson DT (1994) Barnacles: Structure, Function, Development and Evolution. Chapman and Hall, LondonGoogle Scholar
  3. Anderson M, Gorley RN (2008) PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UKGoogle Scholar
  4. Amaral FD, Farrapeira CMR, Lira SMA, Ramos CAC (2010) Benthic macrofauna inventory of two shipwrecks from Pernambuco coast, Northeast Brazil. Rev Nordest Zool 1:24–41Google Scholar
  5. Attolini FS (1997) Composição e distribuição dos anelídeos poliquetas na plataforma continental da região da Bacia do Campos, RJ, Brasil. Dissertation, University of São PauloGoogle Scholar
  6. Austen MC, Widdicombe S, Villano-Pitacco N (1998) Effects of biological disturbance on diversity and structure of meiobenthic nematode communities. Mar Ecol Prog Ser 174:233–246CrossRefGoogle Scholar
  7. Badillo FJ (2007) Epizoítos y parásitos de la tortuga boba (Caretta caretta) en el Mediterráneo Occidental. Dissertation, University of ValenciaGoogle Scholar
  8. Barnard JL, Karaman GS (1991) The Families and Genera of Marine Gammaridean Amphipoda (Except Marine Gammaroids) Part 1. Rec Aust Mus Suppl 13:1–417CrossRefGoogle Scholar
  9. Bellini C, Sanches TM, Formia A (2000) Hawksbill tagged in Brazil captured in Gabon, Africa. Mar Turt Newsl 87:11–12Google Scholar
  10. Bjordnal K (1999) Conservation of Hawksbill Sea Turtles: Perceptions and Realities. Chelonian Cons Biol 3:174–176Google Scholar
  11. Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. Boca Raton, Florida, pp 229–239Google Scholar
  12. Bodin P (1977) Les peuplements de Copépodes Harpacticoïdes (Crustacea) des sédiments meubles de la zone intertidale des côtes charentaises (Atlantique). Mém Mus Natl Hist Nat 104:1–120Google Scholar
  13. Braeckman U, Provoost P, Moens T, Soetaert K, Middelburg JJ, Vincx M, Vanaverbeke J (2011a) Biological vs. physical mixing effects on benthic food web dynamics. Plos ONE 6:1–12CrossRefGoogle Scholar
  14. Braeckman U, Van Colen C, Soetaert K, Vincx M, Vanaverbeke J (2011b) Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Mar Ecol Prog Ser 422:179–191CrossRefGoogle Scholar
  15. Bugoni L, Krause L, Almeida AO, Bueno AAP (2001) Commensal Barnacles of Sea Turtles in Brazil. Mar Turt Newsl 94:7–9Google Scholar
  16. Camargo MG, Lana PC (1995a) Lumbrineridae (Polychaeta: Eunicemorpha) da costa Sul e Sudeste do Brasil. I. Lysarete, Arabelloneris, Lumbrineriopsis, Lumbrinerides, Paraninoe e Ninoe. Iheringia 79:77–91Google Scholar
  17. Camargo MG, Lana PC (1995b) Lumbrineridae (Polychaeta: Eunicemorpha) da costa Sul e Sudeste do Brasil. II. Lumbrineris. Iheringia 79:93–120Google Scholar
  18. Camargo MG (1993) Lumbrineridae (Annelida: Polychaeta) da costa sul e sudeste do Brasil. Dissertation, University of ParanáGoogle Scholar
  19. Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth, UKGoogle Scholar
  20. Dahms HU, Qian PY (2005) Exposure of biofilms to meiofaunal copepods affects the larval settlement of Hydroides elegans (Polychaeta). Mar Ecol Prog Ser 297:203–214CrossRefGoogle Scholar
  21. Dahms HU, HarderT, Qian PY (2004) Effect of meiofauna on macrofauna recruitment:settlement inhibition of the polychaeteHydroideselegansby the harpacticoid copepodTisbe japonica. J Exp Mar Biol Ecol 311:47–61Google Scholar
  22. Danovaro R, Fraschetti S, Belgrano A, Vincx M, Galletti M, Albertelli G, Fabiano M (1995) The potential impact of meiofauna on the recruitment of macrobenthos in a subtidal coastal benthic community of the Ligurian Sea (north-western Mediterranean): A field result. In: Eleftheriou A, Ansell AD, Smith CJ (eds) 28th European Marine Biology Symposium - Biology and Ecology of Shallow Coastal Waters, pp 115–122Google Scholar
  23. De Loreto BO, Bondioli ACV (2008) Epibionts associated with Green Sea Turtles (Chelonia mydas) from Cananéia, Southeast Brazil. Mar Turt Newsl 122:5–8Google Scholar
  24. Dobbs KA, Landry AM Jr (2004) Commensals on nesting hawksbill turtles (Eretmochelys imbricata), Milman Island, northern Great barrier reef, Austrália. Mem Queensland Mus 49:674Google Scholar
  25. Dupuy C, Rossignol L, Geslin E, Pascal PY (2010) Predation of mudflat meio-macrofaunal metazoans by a calcareous foraminifer, Ammonia tepida (Cushman, 1926). J Foraminifer Res 40:305–312CrossRefGoogle Scholar
  26. Epibiont research cooperative (2007) A Synopsis of the Literature on the Turtle Barnacles (Cirripedia: Balanomorpha: Coronuloidea) 1758–2007. Epibiont Res Coop Spec Publi 1:62Google Scholar
  27. Fauchald K (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County. Science Series 28:1–188Google Scholar
  28. Fonsêca-Genevois V, Somerfield PJ, Neves MH, Coutinho R, Moens T (2006) Colonization and early succession on artificial hard substrate by meiofauna. Mar Biol 148:1039–1050CrossRefGoogle Scholar
  29. Frazier J, Winston J, Ruckdeschel CA (1992) Epizoan communities on marine turtles. III. Bryozoa. Bull Mar Sci 1:1–8Google Scholar
  30. Frick MG, Williams KL, Robinson M (1998) Epibionts associates with nesting loggerhead sea turtles (Caretta caretta) in Georgia, USA. Herpetol Rev 29:211–213Google Scholar
  31. Frick MG, Ross A, Williams KL, Bolten AB, Bjordnal KA, Martins HR (2003) Epibiotic Associates of Oceanic-Stage Loggerhead Turtles from the Southeastern North Atlantic. Mar Turt Newsl 101:18Google Scholar
  32. Frick MG, Williams KL, Veljacic D, Pierrard L, Jackson JA, Knight SE (2000) Newly documented epibiont species from nesting loggerhead sea turtles (Caretta caretta) in Georgia, USA. Mar Turt Newsl 88:3–5Google Scholar
  33. Frick MG, Williams K, Markesteyn EJ, Pfaller JB, Frick RE (2002) New records of epibionts from loggerhead sea turtles Caretta caretta (L.). Bull Mar Sci 3:953–956Google Scholar
  34. Frick MG, Pfaller JB (2013) Sea Turtle Epibiosis. In: Wyneken J, Lohmann KJ, Musick JA (eds) The Biology of Sea Turtles, Volume III. CRC, Boca Raton, pp 399–426CrossRefGoogle Scholar
  35. Fuller W, Broderick A, Enever R, Thorne P, Godley BJ (2010) Motile homes: a comparison of the spatial distribution of epibiont communities on Mediterranean sea turtles. J Nat Hist 27:1743–1753CrossRefGoogle Scholar
  36. Gallucci F, Moens T, Vanreusel A, Fonseca G (2008) Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar Ecol 367:173–183CrossRefGoogle Scholar
  37. Grzelak K, Kuklinski P (2010) Benthic assemblages associated with rocks in a brackish environment of the southern Baltic Sea. J Mar Biol Assoc UK 90:115–124CrossRefGoogle Scholar
  38. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution, LondonGoogle Scholar
  39. Jones DS, Hewitt MA, Sampey A (2000) A checklist of the cirripedia of the South China Sea. Raffles Bull Zool 8:233–307Google Scholar
  40. Koivisto M, Westerbom M, Arnkil A (2011) Quality or quantity: small-scale patch structure affects patterns of biodiversity in a sublittoral blue mussel community. Aquatic Biology 12(3):261–270Google Scholar
  41. Lana PC (1987) Padrões de distribuição geográfica dos poliquetas errantes (Annelida: Polychaeta) do estado no Paraná. Ciênc Cultura 39:1060–1063Google Scholar
  42. Loop KA, Miller JD, Limpus CJ (1995) Nesting by the hawksbill turtle (Eretmochelys imbricata) on Milman Island, Great Barrier Reef, Australia. Wildl Res 22:241–252CrossRefGoogle Scholar
  43. Maranhão GMB (2003) Distribuição espaço-temporal da meiofauna e nematofauna no ecossistema recifal de Porto de Galinhas, Ipojuca, Pernambuco, Brasil. Dissertation, Federal University of PernambucoGoogle Scholar
  44. Marcovaldi MA, Sales G, Thomé JCA, Silva ACCD, Gallo BMG, Lima EHSM, Lima EP, Bellini C (2006) Sea turtles and fishery interactions in Brazil: identifying and mitigating potential conflicts. Mar Turt Newsl 112:4–8Google Scholar
  45. Meadows PS, Meadows A, Murray MH (2012) Biological modifiers of marine benthic seascapes: Their role as ecosystem engineers. Geomorphology 157–158:31–48CrossRefGoogle Scholar
  46. Meziane T, Sanabe MC, Tsuchiya M (2002) Role of fiddler crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids. J Exp Mar Biol Ecol 270:191–201CrossRefGoogle Scholar
  47. Morgado EH (1980) A endofauna de Schizoporella unicornis (Johnston, 1847) (Bryozoa), no litoral norte de São Paulo. Dissertation, University State of CampinasGoogle Scholar
  48. Nogueira JMM (2000) Anelídeos poliquetas associados ao coral Mussismilia hispida (Verrill, 1868) em ilhas do litoral do Estado de São Paulo. Phyllodocida, Amphinomida, Eunicida, Spionida, Terebellida e Sabellida. PhD thesis, Universidade de São Paulo, São PauloGoogle Scholar
  49. Norling P, Kautsky N (2007) Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Mar Ecol Prog Ser 351:163–17CrossRefGoogle Scholar
  50. Oláfsson E (2003) Do macrofauna structure meiofauna assemblages in marine soft-bottoms? Vie Millieu 53:249–265Google Scholar
  51. Paiva PC (1990) Padrões de distribuição e estrutura tr6fica dos anelídeos poliquetas da plataforma continental do litoral norte do Estado de São Paulo. Dissertação de mestrado. Universidade de São PauloGoogle Scholar
  52. Pfaller JB, Bjorndal KA, Reich KJ, Williams KL, Frick MG (2006) Distribution patterns of epibionts on the carapace of loggerhead turtles, Caretta caretta. J Mar Biol Assoc UK – Biodiversity Records 5381:1. Accessed 9 August 2013
  53. Reis MO (1995) Estrutura e dinâmica da macrofauna bêntica de poliquetos da região entremarés de praias da Ilha de São Sebastião (SP). Dissertation, University State of PaulistaGoogle Scholar
  54. Raes M, Vanreusel A (2005) The metazoan meiofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic). In: Freiwald A., Roberts J.M. (eds), Cold-water Corals and Ecosystems. Berlin, pp 821–847Google Scholar
  55. Rullier F (1974) Quelques annélides polychètes de Cuba recueillies dans les éponges. Trav Mus Hist Nat 14:9–77Google Scholar
  56. San Martín G (2003) Fauna Iberica. Vol. 21. Annelida, Polychaeta II: Syllidae. Museo Nacional de Ciencias Naturales. CSIC, MadridGoogle Scholar
  57. Santa-Isabel LM, Leão ZMAN, Peso-Aguiar MC (2000) Polychaetes from Guarajuba coral reefs, Bahia, Brasil. Bull Mar Sci 67:645–653Google Scholar
  58. Santos JP, Soares CMA (1999) Crustacea Amphipoda Gammaridae da praia de piedade, Jaboatão dos Guararapes-Pernambuco-Brasil. Trabalho Oceanog 27:61–72Google Scholar
  59. Sarmento V, Barreto FS, Santos JP (2011) The response of meiofauna to human trampling on coral reefs. Sci Mar 75:559–570CrossRefGoogle Scholar
  60. Schärer M (2003) A survey of the epibiota of Eretmochelys imbricata (Testudines: Cheloniidae) of Mona Island, Puerto Rico. Rev Biol Trop 51:87–90PubMedGoogle Scholar
  61. Serrano A, San Martín G, López E (2006) Ecology of Syllidae (Annelida: Polychaeta) from shallow rocky environments in the Cantabrian Sea (South Bay of Biscay). Sci Mar 225–235Google Scholar
  62. Silva KPB (2012) Diversidade e heterogeneidade espacial de Nmatoda no ecossistema recifal de Paripueira, AL-Brasil. Dissertation, Federal University of AlagoasGoogle Scholar
  63. Snelgrove PVR (1994) Hydrodynamic enhancement of invertebrate larval settlement in microdepositional environments: colonizing tray experiments in a muddy habitat. J Exp Mar Biol Ecol 176:149–166CrossRefGoogle Scholar
  64. Souza RCR (1989) A fauna dos bancos de areia de Phragmatopoma lapidosa Kinberg, 1867 (Annelida, Polychaeta) da região de Ubatuba, SP. Dissertation, University State of CampinasGoogle Scholar
  65. Spaccesi FG, Rodrigues Capítulo A (2012) Benthic communities on hard substrates covered by Limnoperna fortunei Dunker (Bivalvia, Mytilidae) in a freshwater estuarine beach (Río de la Plata, Argentina). J Limnol 71:144–153Google Scholar
  66. Sundelin B, Elmgren E (1991) Meiofauna of an experimental soft bottom ecosystem- effects of macrofauna and cadmium exposure. Mar Ecol Prog Ser 70:245–255CrossRefGoogle Scholar
  67. Torres-Pratts H, Schärer HMT, Schizas NV (2009) Genetic diversity of Chelonibia caretta, commensal barnacles of the endangered hawksbill sea turtle Eretmochelys imbricata from the Caribbean (Puerto Rico). J Mar Biol Assoc UK 89:719–725CrossRefGoogle Scholar
  68. Urbaniak GC, Plous S (2011) Research Randomizer (Version 3.0) [Computer software]. Accessed 10 February 2013
  69. Vivaldo SG, Sarabia DO, Salazar CP, Hernandez AG, Lezama JR (2006) Identification of parasites and epibionts in the olive ridley turtle (Lepidochelys olivacea) that arrived to the beaches of Michoacan and Oaxaca, Mexico. Vet Mex 37:431–440Google Scholar
  70. Wahl M (1989) Marine Epibiosis.1.Fouling and antifouling - some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  71. Watzin MC (1983) The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia 59(2):163–166CrossRefGoogle Scholar
  72. Watzin MC (1986) Larval settlement into marine soft-sediment systems: Interactions with the meiofauna. J Exp Mar Biol Ecol 98(1–2):65–113CrossRefGoogle Scholar
  73. Witzell WN (1983) Synopsis of biological data on the hawksbill turtles, Eretmochelys imbricata (Linnaeus, 1766). FAO Fish Synop 137:1–86Google Scholar
  74. Young PS (1991) The superfamily Coronuloidea leach (Cirripedia, Balanomorpha) from de Brazilian coast, with redescription of Stomatolepas species. Crustaceana 61:190–212CrossRefGoogle Scholar
  75. Zobrist EC, Coull BC (1992) Meiobenthic interactions with macrobenthic larvae and juveniles: an experimental assessment of the meiofaunal bottleneck. Mar Ecol Prog Ser 88:1–8CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. V. V. Corrêa
    • 1
  • J. Ingels
    • 2
  • Y. V. Valdes
    • 1
  • V. G. Fonsêca-Genevois
    • 1
  • C. M. R. Farrapeira
    • 3
  • G. A. P. Santos
    • 1
  1. 1.Departmento de Zoologia, CCB, Laboratorio de MeiofaunaUniversidade Federal de PernambucoRecifeBrasil
  2. 2.Plymouth Marine Laboratory, Prospect Place, The HoePlymouthUK
  3. 3.Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrasil

Personalised recommendations