Skip to main content
Log in

Morphological and molecular variation in Synaphobranchus eels (Anguilliformes: Synaphobranchidae) of the Mid-Atlantic Ridge in relation to species diagnostics

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Synaphobranchus eels are difficult to identify at species level. Previous taxonomic studies show several inconsistencies concerning the diagnostic characters of Synaphobranchus kaupii Johnson, 1862 and Synaphobranchus affinis Günther, 1877. One hundred and eleven specimens from the Mid-Atlantic Ridge and a type specimen of S. affinis were examined morphologically, and the DNA barcode region of the mitochondrial COI gene was sequenced from 58 of these specimens. The results of this examination showed an ontogenetic change in most morphometric characters and that most of the previously used diagnostic characters—namely, dorsal fin origin in relation to the vent, predorsal length, scale shape and pattern, and dentition—cannot distinguish between the species S. kaupii and S. affinis. The type specimen of S. affinis may represent a member of a species that closely resembles S. kaupii morphologically, separable by having a lower number of vertebrae, dorsal fin rays, and anal fin rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida J, Biscoito M (2007) New records of Synaphobranchus (Anguilliformes, Synaphobranchidae) from off the Azores (eastern Atlantic Ocean). Cybium 31:391–392

    Google Scholar 

  • Almeida AJ, Biscoito M, Santana JI, González JA (2010) New records of grey cutthroat, Synaphobranchus affinis (Actinopterygii: Anguilliformes: Synaphobranchidae) from the eastern-central Atlantic ocean. Acta Ichthyol et Piscat 40(1):66–70

    Google Scholar 

  • Bergstad OA, Falkenhaug T, Astthorsson OS, Byrkjedal I, Gebruk AV, Piatkowski U, Priede IG, Santos RS, Vecchione M, Lorance P, Gordon JDM (2008a) Towards improved understanding of the diversity and abundance patterns of the mid-ocean ridge macro- and megafauna. Deep Sea Res II 55:1–5

    Article  Google Scholar 

  • Bergstad OA, Menezes G, Høines ÅS (2008b) Demersal fish on a mid-ocean ridge: distribution patterns and structuring factors. Deep-Sea Res II 55:185–202

    Article  Google Scholar 

  • Böhlke EB (1982) Vertebral formulae for type specimens of eels (Pisces: Anguilliformes). Proc Acad Nat Sci Phila 134:31–49

    Google Scholar 

  • Böhlke EB (1989) Methods and terminology. In: Böhlke EB (ed) Fishes of the Western North Atlantic, Part 9. Allen Press Inc, Lawrence, pp 1–7

    Google Scholar 

  • Bruun AF (1937) Contributions to the life histories of the deep sea eels: Synaphobranchidae. Dana-Rep 9:1–31

    Google Scholar 

  • Castle PHJ (1961) Deep-water eels from cook strait, New Zealand. Zool Publ Vic Univ Wellingt 27:1–30

    Google Scholar 

  • Castle PHJ (1964) Deep-sea eels: family Synaphobranchidae. Galathea Rep 7:29–42

    Google Scholar 

  • Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7:184–190

    Article  CAS  Google Scholar 

  • Eschmeyer W, Fricke R (2011) Catalog of fishes electronic version. http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed 30 Nov 2011

  • Fink WL (1981) Ontogeny and phylogeny of tooth attachment modes in actinopterygian fishes. J Morphol 167:167–184

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  • Gabriel ML (1944) Factors affecting the number and form of vertebrae in Fundulus heteroclitus. J Exp Zool 95:105–147

    Article  Google Scholar 

  • Gronow LT (1854) Muræna. In: Gray JE (ed) Catalogue of fish collected and described by Laurence Theodore Gronow, now in the British Museum. Woodfall and Kinder, London, pp 17–21

  • Günther A (1870) Synaphobranchina. Catalogue of the fishes in the British Museum 8:22–23

    Google Scholar 

  • Günther A (1877) Preliminary notes on new fishes collected in Japan during the Expedition of H.M.S. “Challenger”. Ann Mag Nat Hist 20(4):433–446

    Google Scholar 

  • Günther A (1887) Report on the deep-sea fishes collected by H.M.S. Challenger during the years 1873–76. Zoology 57:i-lxv + 1–i-lxv + 335

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–322

    Article  CAS  Google Scholar 

  • Holt EWL, Byrne LW (1906) First report on the fishes of the Irish Atlantic slope. Fish Irel Sci Investig 2:3–27

    Google Scholar 

  • Itazawa Y (1959) Influence of temperature on the number of vertebræ in fish. Nature 183:1408–1409

    Google Scholar 

  • Jawad LA (2003) The effect of formalin, alcohol and freezing on some body proportions of Alepes djeddaba (Pisces: Carangidae) collected from the Red Sea coast of Yemen. Rev Biol Mar Oceanogr 38:77–80

    Google Scholar 

  • Johnson JY (1862) Descriptions of some new genera and species of fishes obtained at Madeira. Proc Meet Zool Soc Lond 1861:167–180

    Google Scholar 

  • Jordan DS, Davis BM (1892) A preliminary review of the apodal fishes or eels inhabiting the waters of America and Europe. US Comm of Fish and Fisheries Part 16: Rep Comm 1888:581–677

    Google Scholar 

  • Jordan DS, Snyder JO (1901) A review of the apodal fishes or eels of Japan, with descriptions of nineteen new species. Proc US Natl Mus 23:837–890

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Koefoed E (1927) Fishes from the sea-bottom. Rep Sci Results of the “Michael Sars” N Atl Deep-Sea Exped 1910 4:1–148

    Google Scholar 

  • Kristoffersen JB, Salvanes AGV (1998) Effects of formaldehyde and ethanol preservation on body and otoliths of Maurolicus muelleri and Benthosema glaciale. Sarsia 83:95–102

    Google Scholar 

  • Lea E (1913) Muraenoid larvae. Rep Sci Results of the “Michael Sars” N Atl Deep-Sea Exped 1910 3(1):1–48

    Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Matsubara K (1938) On the individual variations found in an apodal fish Synaphobranchus pinnatus (Gronow), with special reference to its taxonomy. J Imp Fish Inst 33:60–66

    Google Scholar 

  • Matsubara K, Ochiai A (1951) Notes on the eels of the genus Synaphobranchus found in Japanese waters. Jpn J Ichthyol 1:251–259

    Google Scholar 

  • Melo MRS (2007) A new synaphobranchid eel (Anguilliformes: Synaphobranchidae) from Brazil, with comments on the species from the Western South Atlantic. Copeia 2007:315–323

    Article  Google Scholar 

  • Norman JR, Trewavas E (1939) Notes on the eels of the family Synaphobranchidæ. Ann Mag Nat Hist 3:352–359

    Google Scholar 

  • Okamura (1995) Fishes collected by the R/V Shinkai Maru around Greenland. Japan Marine Fishery Resources Research Center, Tokyo

    Google Scholar 

  • Okamura O, Machida Y (1987) Additional records of fishes from Kochi Prefecture, Japan (II). Mem Fac Sci Kochi Univ Ser D (Biol) 8:101–112

    Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. Vienna http://www.R-project.org

  • Robins CH (1971) The comparative morphology of the synaphobranchid eels of the straits of Florida. Proc Acad Nat Sci Phila 123:153–204

    Google Scholar 

  • Robins CH, Robins CR (1989) Family Synaphobranchidae. In: Böhlke EB (ed) Fishes of the Western North Atlantic, Part 9. Allen Press, Lawrence, pp 207–253

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Smith DG (2002) Synaphobranchidae. In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic, vol 2, Bony fishes part 1 (Acipenseridae to Grammatidae). FAO, Rome, pp 719–724

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Sulak KJ, Shcherbachev YN (1997) Zoogeography and systematics of six deep-living genera of synaphobranchid eels, with a key to taxa and description of two new species of Ilyophis. Bull Mar Sci 60:1158–1194

    Google Scholar 

  • Swain DP, Foote CJ (1999) Stocks and chameleons: the use of phenotypic variation in stock identification. Fish Res 43:113–128

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tåning ÅV (1950) Influence of the environment on number of vertebræ in teleostean fishes. Nature 165:28

    Google Scholar 

  • Tåning ÅV (1952) Experimental study of meristic characters in fishes. Biol Rev 27:169–193

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and canodraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • Vaillant L (1888) Poissons. In: Masson G (ed) Expéditions scientifiques du travailleur et du talisman pendant les années 1880, 1881, 1882, 1883. Masson, Paris

  • Ward RD, Holmes BH (2007) An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (cox1) in fishes. Mol Ecol Notes 7:899–907

    Article  CAS  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    Article  CAS  Google Scholar 

  • Wenneck T de L, Falkenhaug T, Bergstad OA (2008) Strategies, methods, and technologies adopted on the R.V. G.O. Sars MAR-ECO expedition to the Mid-Atlantic Ridge in 2004. Deep Sea Res II 55:6–28

    Article  Google Scholar 

Download references

Acknowledgments

This study is a contribution to the Census of Marine Life field project MAR-ECO (www.mar-eco.no). The examined MAR-ECO specimens were provided by Natural History Collections, University Museum of Bergen and the Institute of Marine Research, Bergen. The type specimens of S. affinis and was provided by the Natural History Museum, in London.

We thank Gunnar Langhelle for practical help in the lab, Hege Folkestad for locating many hard-to-find articles, John-Arvid Grytnes for important comments on the multivariate statistical analyses, Paco Cardenas for translating the French articles, and Humberto Mendes for translating the Spanish articles. We are most grateful to David Rees for help with the DNA sequencing, and to two anonymous reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Marius Svendsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svendsen, F.M., Byrkjedal, I. Morphological and molecular variation in Synaphobranchus eels (Anguilliformes: Synaphobranchidae) of the Mid-Atlantic Ridge in relation to species diagnostics. Mar Biodiv 43, 407–420 (2013). https://doi.org/10.1007/s12526-013-0168-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-013-0168-1

Keywords

Navigation